Click here to Skip to main content
15,891,905 members
Articles / Mathematics
Technical Blog

More maths from IMO 2011

Rate me:
Please Sign up or sign in to vote.
0.00/5 (No votes)
9 Aug 2012CPOL2 min read 7.5K   1   1
Solution to a Math problem.

Last week I was looking for something on Google. The reason I can't remember what I was looking for is the IMO website (International Mathematical Olympiad) that "accidently" was returned in the search results. So I stuck on resolving one of the exercises for ... 3 days!!!

The problem that attracted my attention was number 3 from IMO 2011:

For any function ƒ:R→R that satisfies:

ƒ(x+y)≤y⋅ƒ(x)+ƒ(ƒ(x)), for ∀x,y∈R

prove that ƒ(x)=0, for all x≤0.

Here is the solution. Few inequalities that will be used later first:

- y=0 ⇒ ƒ(x)≤ƒ(ƒ(x)) (1)

- x=0 ⇒ ƒ(y)≤y⋅ƒ(0)+ƒ(ƒ(0)) ≡ ƒ(x)≤x⋅ƒ(0)+(ƒ(0)) (2)

- ƒ(0)=ƒ(x+(-x))≤-x⋅ƒ(x)+ƒ(ƒ(x)) ≡ ƒ(0)+x⋅ƒ(x)≤ƒ(ƒ(x)) (3)

- ƒ(ƒ(x))=ƒ(x+ƒ(x)-x)≤[ƒ(x)-x]⋅ƒ(x)+ƒ(ƒ(x)) ≡ [ƒ(x) - x]⋅ƒ(x)≥0 (4)

Let's note ƒ(0)=c and rewrite/expand the above expressions:

- from (1) ⇒ c≤ƒ(c) (1A)

- from (2) ⇒ ƒ(x)≤x⋅c+ƒ(c) (2A)

- from (3) ⇒ c+x⋅ƒ(x)≤ƒ(ƒ(x)) (3A)

- from (1) and (2A) ⇒ ƒ(x)≤ƒ(ƒ(x))≤ƒ(x)⋅c+ƒ(c) or ƒ(x)≤ƒ(x)⋅c+ƒ(c) (5)

- from (5), if x=c ⇒ ƒ(c)⋅c≥0 (6)

All these are true for ∀x∈R. Let's prove that c=0.

1. First of all, let's suppose c<0.

From (6) ⇒ ƒ(c)≤0.

From (5) ⇒ ƒ(x)⋅[1-c]≤ƒ(c)≤0. 1–c>1, from which we have ƒ(x)⋅[1-c]≤0 ≡ ƒ(x)≤0, for ∀x∈R.

From (4) and because ƒ(x)≤0 ⇒ ƒ(x)–x≤0 ≡ ƒ(x)≤x, for ∀x∈R. Considering this and (1A) ⇒ c≤ƒ(c)≤c ⇒ ƒ(c)=c.

From (3A) and x=c ⇒ c+c⋅ƒ(c)<ƒ(ƒ(c)) ≡ c+c2≤c ≡ c2≤0 ⇒ c=0 - contradiction.

2. Let's suppose c>0.

From (1A) ⇒ 0<c≤ƒ(c).

From (2A) we have ƒ(x)≤x⋅c+ƒ(c), where x⋅c+ƒ(c) is a line with positive "c" as a coefficient (i.e. increasing line). This means that for ∀x≤-ƒ(c)⁄c ⇒ ƒ(x)≤x⋅c+ƒ(c)≤0 (*).

From (4) and (*) ⇒ ƒ(x)–x≤0 for ∀x≤-ƒ(c)⁄c or ƒ(x)≤x ≤-ƒ(c)⁄c (again, for ∀x≤-ƒ(c)⁄c). But because ƒ(x)≤-ƒ(c)⁄c ⇒ ƒ(ƒ(x))≤-ƒ(c)⁄c (**).

From (3A) and (**) ⇒ c+x⋅ƒ(x)≤ƒ(ƒ(x))≤-ƒ(c)⁄c, for ∀x≤-ƒ(c)⁄c. Both "c" and ƒ(c) are positive ⇒ x⋅ƒ(x)≤-[ƒ(c)⁄c]–c≤0 or x⋅ƒ(x)≤0 for ∀x≤-ƒ(c)⁄c. Because x is negative and (from (*)) ƒ(x) is negative ⇒ x⋅ƒ(x)≥0. So, 0≤x⋅ƒ(x)≤0, for ∀x≤-ƒ(c)⁄c. This is possible only if ƒ(x)=0, for ∀x≤-ƒ(c)⁄c (***).

From (*) and (***) ⇒ 0=ƒ(x)≤x⋅c+ƒ(c)≤0, for ∀x≤-ƒ(c)⁄c, which has sense only if c=0 - contradiction.

We proved that c=0 and ƒ(0)=0. As a result:

- from (2A) ⇒ ƒ(x)≤x⋅c+ƒ(c)=0 ≡ ƒ(x)≤0, for ∀x∈ R (2B).

- from (3A) ⇒ x⋅ƒ(x)≤ƒ(ƒ(x)), for ∀x∈R (3B).

From (2B) ⇒ for ∀x≤0, x⋅ƒ(x)≥0.

From (3B) ⇒ 0≤x⋅ƒ(x)≤ƒ(ƒ(x)), for ∀x≤0.

But ƒ(x)≤0 always (2B). So must be ƒ(ƒ(x))≤0 ⇒ 0≤x⋅ƒ(x)≤ƒ(ƒ(x))≤0, for ∀x≤0. From this ⇒ ƒ(x) = 0, for ∀x≤0.

Love this stuff :)

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Software Developer (Senior) BlackRock
United Kingdom United Kingdom
My name is Ruslan Ciurca. Currently, I am a Software Engineer at BlackRock.

Comments and Discussions

 
Suggestionneed formatting Pin
Shahriar Iqbal Chowdhury/Galib9-Aug-12 22:32
professionalShahriar Iqbal Chowdhury/Galib9-Aug-12 22:32 
Please format your post

General General    News News    Suggestion Suggestion    Question Question    Bug Bug    Answer Answer    Joke Joke    Praise Praise    Rant Rant    Admin Admin   

Use Ctrl+Left/Right to switch messages, Ctrl+Up/Down to switch threads, Ctrl+Shift+Left/Right to switch pages.