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Abstract 
 
 
 
This is an individual effort on parallelizing the quicksort algorithm using MPI (Message 

Passing Interface) to sort data by sharing the partitions generated from regular sampling. 

The basic idea was to avoid the initial partitioning of data and merging step of sorted 

partitions in different processes. And finally to conduct a performance evaluation for the 

implementation. This evaluation was based on comparing sorting times with an algorithm 

which uses initial partitioned set between processes and to the simple sequential sorting 

algorithm.  
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1. Introduction  
 
 
 

Quicksort is a well known algorithm used in data sorting scenarios developed by C. A. R. 

Hoare. It has the time complexity of O (n log n) on average case run and O (n2) on worst 

case scenario. But quicksort is generally considered to be faster than some of sorting 

algorithm which possesses a time complexity of O (n log n) in average case.  

 The fundamental of quicksort is choosing a value and partitioning the input data 

set to two subsets which one contains input data smaller in size than the chosen value and 

the other contains input data greater than the chosen value. This chosen value is called as 

the pivot value. And in each step these divided data sets are sub-divided choosing pivots 

from each set. Quicksort implementations are recursive and stop conditions are met when 

there is no sub division is possible. 

  

 In this attempt, the main idea was to implement a parallelized quicksort to run on 

a multi-core environment and conduct a performance evaluation. This parallelization is 

obtained by using MPI API functionalities to share the sorting data set among multi 

processes.  

 

1.1 Steps followed: 

 

• Implement an optimized algorithm using MPI to sort data. 

This algorithm will be a parallelized implementation of the quicksort algorithm 

and it will avoid merging step by dividing input set through regular sampling. 

• Performance evaluation 

o Perform sorting sample data sets against sequential quicksort algorithm. 

o Perform sorting sample data sets against an algorithm with initial 

portioning and merging. 

o Produce statistical evaluation through result forecasting. 
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• Evaluate its performance based on logical time complexities. 

• Conclusion. 

 
1.2 Quicksort algorithm 
 
 

 int partition(int  *arr, int left, int right) { 
 int i = left, j = right; 
 int tmp; 
 int pivot = arr[(left + right) / 2]; 
 /* partition */ 
 
 while (i <= j) { 
  while (arr[i] < pivot) 
      i++; 
     while (arr[j] > pivot) 
      j--; 
          if (i <= j) { 
           tmp = arr[i]; 
             arr[i] = arr[j]; 

                  arr[j] = tmp; 
                  i++; 
                  j--; 
             } 
       } 
       return j; 

} 
  
void quick_sort(int* arr, int left, int right){ 
 /* recursion */ 
 int part_index = partition(arr, left, right); 

if (left < part_index) 
quickSort(arr, left, part_index); 

          if (part_index + 1 < right) 
          quickSort(arr, part_index + 1, right); 
} 

 
 
 
 
 

2. Parallel Quicksort  
 
Not only quicksort has considered being a better performing sorting algorithm but it’s 

also considered to be one of reliable algorithms which can adapt to parallelization. With 
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quicksort, partitions can be sorted in parallel and combined with operations like merge to 

assemble the outputs. The conventional methods of parallelizing quicksort based on 

dividing the initial input to set of sub arrays and distributes them among the available  set 

of processes to be sorted sequentially and later gathered using merge steps. Other than 

that there has been many researches done on parallelizing quicksort by optimizing pivot 

selections and various partitioning strategies.  

 

My attempt was to avoid initial scattering of data and distribute data sets among 

processes using initial partitioning steps. So this will avoid the merging steps as the final 

output is produced only by gathering the sorted set of data from each process.  

 

2.1 Basic implementation steps: 

 

• Perform an initial partitioning of data until all the available processes were given 

a subset to sort sequentially 

• Sort the received data set by each process in parallel. 

• Gather all data, corresponding to the exact partitioned offsets without performing 

any merging. 

 

 

2.2 Initial data partitioning and sub array allocations 

 

The scheme of initial data partitioning contains following steps: 

 

• Each process performs an initial partitioning of data using pivots regarding if 

there’s any process available to share its data set. 

• Send one part of data to the sharing process and start partitioning the remaining 

data set if there’s more processes available. 

• Else perform a sequential quicksort on the data set. 

• Send locally sorted data set to its original sender. 
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This scheme requires a proper allocation of processes in each partitioning and data 

sharing steps. The scheme I used is to allocate data considering its rank and a calculation 

schema which determines which processes will share the data set. 

 

2.3 Process Allocation scheme 
 

Process Sharing set Sharing process rank calculation Process set in each step 
0 1 0 + 20 0 
0 
1 

1,2 
3 

0 + 20 , 0 + 21 

1 + 21 
1 

0 
1 
2 
3 

1,2,4 
3,5 
6 
7 

0 + 20 , 0 + 21 , 0 + 22 
1 + 21 , 1 + 22 

2 + 22 

3 + 22 

2 

0 
1 
2 
3 
4 
5 
6 
7 

1,2,8 
3,5,9 
6,10 
7,11 
12 
13 
14 
15 

0 + 20  0 + 21  0 +22  0 +23 

1 + 21  1 + 22 1 + 23 

2 + 22  2 + 23  

3 + 22   3 + 23 

4 + 23 

5 + 23 

6 + 23 

7 + 23 

3 

 
Table 1: Process sharing scheme 
 
So according to the above scheme, processes are allocated using following equation: 

Process p with the rank r will share its partition with the process rank, 

 

� Rank = r + 2n   where n satisfies the condition:  2 n-1 ≤ r < 2n 

 

With this calculated rank, each process will try to find its data partition sharing process. 

If the process is there, then the partition is sub divided and shared with the process which 

possesses that particular rank. If there is no such process, then the partition is sequentially 

sorted and sent back to the parent process who originally shared the sorted set. Each of 

these calls is implemented to run recursively.  
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Choosing which partition to share 

 

In most cases, partitions produced by regular sampling may differ in size. So when any 

partitioning is performed to share the data set, the largest sub partition is kept within the 

lead process and the smaller set is sent to the receiving process. There are two reasons to 

send the smaller partition. They are, 

 
1. It reduces the amount of communication overhead by transferring the smaller data 

set. 

2. In process allocation schema, the process that is responsible in partitioning will be 

the process next in line to share the data set once again before the receiving 

process. So if any more processes are in the pool, the sending process has more 

chance in sharing its data set than the receiving process.  

 

Ex: For a data set to be sorted using three processes, 0th process will send the smaller 

data set to 1st partition. Then the remaining process no. 2 will be assigned to process 

no. 0 to share its data set. So before 1st process get a data sharing process, the process 

no. 0 who created the partitions has the chance of having another process to share its 

data set. 

 

The performance gain was checked using a slightly changed parallel quicksort 

implementation where the lead process always keeping the first half of the array. This 

altered version ran against the smaller partition sharing quicksort implementation. Sorting 

time tends to be smaller on smaller partition sharing implementation than the first half of 

array sharing implementation. 
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Diagram 1: Partition sharing scheme  
 

 
 

Diagram 2: Variable partition sharing scheme 
 
 

3. MPI implementation 

 

Parallel quicksort was implemented using OpenMPI, one of open source MPI 

implementations available. And the program is written in C language. 

 

• Function sort_recursive 

 

This function is called recursively by each process in order to perform the initial 

partitioning when a sharing process is available or to sequentially sort the data set. 

Finally it sends the sorted data set to its sharing process. 

  

The pivot for each step is chosen as the element indexed at [size / 2], which takes the 

middle value of the array. Also a specific index value is used to keep the number of 

increments while calculating the rank of next process in line to share the data set 

recursively. 
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int sort_recursive(int* arr,  int size, int pr_rank, int 
max_rank, int rank_index){ 
MPI_Status dtIn; 
int share_pr  = pr_rank + pow(2, rank_index); /* Calculate the 

rank of sharing process*/ 
rank_index ++; /*Increment the count 

index*/ 
 
if(share_pr  > max_rank){ /*If no process to share 

sort_rec_seq(arr, size);   
 sequentially*/ 

return 0; 
} 

  int pivot = arr[size/2]; /* Select the pivot */ 
 
  int partition_pt = sequential_quicksort(arr, pivot, size, 
(size/2) -1);  /* partition array */ 
  int offset = partition_pt  + 1; 
 
  
 
/* Send partition based on size, sort the remaining partitions, 
receive sorted partition */ 
 
 if (offset > size - offset){ 

MPI_Send((arr + offset), size - offset, MPI::INT, share_pr 
, offset, MPI_COMM_WORLD); 
sort_recursive (arr, offset, pr_rank,  max_rank,  
rank_index); 
 
MPI_Recv((arr + offset), size - offset, MPI::INT, share_pr, 
MPI_ANY_TAG, MPI_COMM_WORLD, &dtIn); 

  } 
  else{ 

MPI_Send(arr, offset, MPI::INT, ch_pr , tag, 
MPI_COMM_WORLD); 
sort_recursive ((arr + offset), size - offset, pr_rank, 

max_rank, rank_index); 
 
MPI_Recv(arr, offset, MPI::INT, ch_pr, MPI_ANY_TAG,   
MPI_COMM_WORLD, &dtIn); 

  } 
 
 
 
 
 
 
Except the leading process, all other processes will execute the following lines of code 
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         int* subarray = NULL; 
    MPI_Status msgSt, dtIn; 
    int sub_arr_size = 0; 
    int index_count = 0; 
    int pr_source = 0; 
 

while(pow(2, index_count) <=  rank) /* calculate the 
index_count ++;                  index_count as 

2 n-1 ≤ rank < 2n    

   n = index_count */ 
 

MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,   
&msgSt); 

    MPI_Get_count(&msgSt, MPI::INT, &sub_arr_size); 
    pr_source = msgSt.MPI_SOURCE;  /* Get the 

sending process rank 
*/ 

 
    subarray = (int*)malloc(sub_arr_size * sizeof(int));  

MPI_Recv(subarray, sub_arr_size, MPI::INT, MPI_ANY_SOURCE,      
MPI_ANY_TAG, MPI_COMM_WORLD, &dtIn); 

 
  int pivot = subarray[(sub_arr_size / 2)];  /* Find 

the pivot */ 
sort_rec(subarray, sub_arr_size, rank, size_pool -1,    
rec_count); /* sort recursively */ 
/*   send sorted sub array */ 

   MPI_Send(subarray, sub_arr_size, MPI::INT, pr_source,     
tag, MPI_COMM_WORLD); 

   free(subarray); 
 
 
 

4. Experimental Results 
 
Quicksort implementation was benchmarked with a parallel quicksort implementation 

with merge and with sequential quicksort implementation letting them to sort same set of 

data in varying sizes. These test results were gathered by running a batch of sorting tasks 

on each test case and averaging all the obtained results. 

� All these tests were performed on a Linux cluster of 7-core Intel Xeon E5420 

processors with 16 GB memory. 

 The benchmarks were run for following scenarios  

• Sorting data sets of 5 – 100 M with five processes for each implementation. 

• Sort data set of 10 M for a process range 1 - 10 , 1 M for a process range  5 – 70 
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4.1 Sequential implementation 

Sequential implementation was the simple quicksort algorithm, runs with a single 

process. Each data set was first ran with the sequential implementation and then with two 

parallel implementations. 

 

4.2 Parallel quicksort with merge 

This implementation belongs to Puneet C Kataria’s, [Parallel Quciksort Implementation 

Using MPI and Pthreads] a project aimed to implement a parallelized quicksort with 

minimum cost of merging by using tree structured merging. He is currently a graduate 

student and more details about his implementation can be found in his personal page, 

http://www.winlab.rutgers.edu/~pkataria/ 

 

 
 
 

 
Graph 1: Data plot for the sorting times for varying data set sizes. 
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Graph 2: Data plot for the sorting times for varying data set sizes. 

 

These graphs show the results of sorting data with a range of 1-100 M. Each data set was 

averaged with multiple runs and the two figures are corresponding to the results of 

running parallel quicksort without merge and with merge implementations, parallelized 

by 5 to  40 processes.  

 

Graph1 indicates a lowest running time for parallel quicksort with merge and the time 

increment tend to be very smooth and linear. And the parallel quicksort without merge 

tends to show fluctuations with the increasing size of data set yet linear.  

 

Graph2 indicates that the two implementations tend show close results, yet the parallel 

quicksort without merge implementation shows much irregularity than the other parallel 

implementation. 
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These results show that overall parallel implementation with initial partitioning and 

merging outperforms the parallel quicksort implementation without merge. Also the fixed 

partitioning shows much smoother increment of time with increasing data size on less 

number of processes. But the parallel quicksort without merge shows the opposite 

behavior as it gets smoother with the higher number of processes.  

 

 
 
 

 
 
 
 
Graph 3: Data plot for the varying number of processes [1 – 10], data set size 107 [10 M] 
 

 

This diagram indicates the results after running two parallel implementations with 1 – 10 

processes for a random data set of 107 (10 M). Parallel quicksort with initial fixed size 

partitioning has again showed better performances while increasing the number of 

processes and lowest running time was when the number of processes equals to 7. On the 
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other hand, the parallel quicksort implementation without initial fixed partitioning also 

seems to show parallelism when number of processes were increased but it 

underperformed the first one.  

 This quite explains that fixed partition implementation seems to outperform in 

small number of processes comparing to the parallel quicksort without initial fixed 

partitioning. When the number of processes was small, the fixed partitioning 

implementation seems to be more efficient with small number of merging steps but the 

parallel implementation without initial partitioning seems to be not efficient regarding the 

unbalanced partitioning and communication overheads. 

 
 

 
 

 
 
 
Graph 4: Data plot for the varying number of processes [5 – 70], data set size 106 [1 M] 
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Above figure shows the results of sorting 1M data set with increasing the number of 

processes from 5 to 70.  

Though without merge implementation outperform with merge implementation at some 

value of processes, the lowest time was shown by the with merge implementation. 

 

4.7 Speedup analysis 

 

Speedup = Running time for best sequential algorithm 

       Running time for  parallel algorithm  

Speedup was estimated based on the results of sorting 10 M data set. [Graph 3] 

 

No of processes With fixed partition Partition by regular sampling 

2 1.752 1.4 

3 2.236 1.71 

4 2.813 1.73 

5 3.148 1.923 

6 3.637 2.021 

7 4.095 2.141 

8 3.938 2.084 

9 3.084 2.536 

10 3.186 2.656 

 

 

According to speedup analysis, fixed partition outperformed the partition by regular 

sampling and the highest gained by fixed partitioning and partitioning by regular 

sampling implementations were 4.05 and 2.655. 
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5. Time complexity Analysis 

 
 
With the general assumption of time complexity for sequential quicksort = n log n, 

Let’s take the best case sort analysis for the above implementation, 

So assuming that each partitioning might create two equal sections, 

 

For a two process running, 

T (n) = (n/2) log (n/2) 

For three process running, 

T (n) = max ((n/2) log (n/2) + (n/4) log (n/4)) 

       = (n/2) log (n /2) 

According to table 1, after 4 processes running, 

T (n) = (n/4) log (n/4) 

 

Hence for p number of processes, 

T (n) = (n / k) log (n / k) where k satisfies = 2k-1  <  p  < = 2k 

 

But since the implementation runs as sharing the smallest partition strategy and variable 

partitioning sizes, this time analysis can’t prove the average running time for the parallel 

quicksort without merging. Also adding up the overhead of communication is not taken 

to account. Also the experimental results also proven that this time complexity isn’t 

preserved for the average run of the implementation. 
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6. Conclusion 

 

With the performance analysis, it’s evident that the new implementation seems to become 

more efficient with a higher number of processes.  

 

Also it could outperform with merge implementation in certain number of processes. But 

with the performance basis, the lowest running time was shown by the with merge 

implementation for a less number of processes. Without merge implementation performs 

less efficiently with fewer number of processes.  

 

As for the conclusion below points can be highlighted. 

• Initial partitioning can be very crucial in parallel quicksort with MPI. 

After implementing parallel quicksort without initial fixed partitioning and 

running it against a counter-implementation, it’s evident that the time efficiency 

gains from initial fixed petitioning is important. If not, a better way to perform 

initial partitioning through regular sampling is vital in order to gain higher 

performance.   

• With MPI, two parallel implementations tend to show less performance on higher 

number of processes since MPI communication overheads. This overcome has to 

compensate by limiting the amount of running processes according to the data set 

size. 

• Also partitioning through regular sampling, can cause very irregular running time 

due to variable partitioning in each step. Also this may leads to a worst case of 

highly unbalanced data distributions which might lead to inefficient time 

performances. 

• With variable partitioning in each step considering the available processes, some 

processes may not be efficiently used. In fact for the worst case with a higher 

number of processes for a small data set, some processes may leave out without 

any data to sort sequentially which shows inefficient use of processes. 
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So this analysis emphasized the point of initial partitioning combined with regular 

sampling that can partition input data set  to equal subsets is important in order to 

improve performance in parallel quicksort. Also more parallelized merging and regular 

sampling can improve performance. 
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