Parallel Quicksort using MPI
&
Performance Analysis

Prasad Perera
prasadcse@gmail.com

Table of Contents

O 1 o 18 [ox 1 o] o HO PP TPPPPPPPPPPRRN 4
1.1 StePs fOlIOWE.........ooeieiiiiieeeee e 4
1.2 QUICKSOIt @lgOFTNMuuviiiiiiiiiiiiiitemeeme e 5

2. Parallel Quicksort
2.1 Basic Implementation StEPS.......ccooiiieeeeeee e 6

2.2 Initial data partitioning and sub array allocat

2.3 Process Allocation scheme...........ooooiiii e 7
3. MPLIMPIEMENTALION.t 9
4. Experimental RESUILS.........ooiiiiiiii ettt re e e e e e e e e e e ee s 11
4.1 Sequential IMPIEMENTALION............... e 12
4.2 Parallel quicksort With merge..........ooeeeeeeeiiiii e 12
4.7 SPEEAUP ANAIYSIS. . euuruurunruniniiimmmmmmme e e e e ee e e e e e et e e ea et e e et e e e e et et e aaaaaaaeaaeas 16
5. Time compleXity ANAIYSIS........uuuiiiiiiiiiiiiieiiiiiiiieiieiieiieiiiiaerrerernen e ereree e eeeeeeees 17
B. CONCIUSION. ..ttt ettt e e e e e e ettt e e e e esssbb b s e e e e e e eeeeennnes 18
7 REIBIEINCES. ...t ettt e e e e e e e e e e e e a e e e e e e 19

Abstract

This is an individual effort on parallelizing theigksort algorithm using MPI (Message
Passing Interface) to sort data by sharing thatjpars generated from regular sampling.
The basic idea was to avoid the initial partitianiof data and merging step of sorted
partitions in different processes. And finally toncluct a performance evaluation for the
implementation. This evaluation was based on comg@aorting times with an algorithm
which uses initial partitioned set between process®l to the simple sequential sorting
algorithm.

1. Introduction

Quicksort is a well known algorithm used in dataisg scenarios developed by A. R.
Hoare It has the time complexity of O (n log n) on age case run and O*ron worst
case scenario. But quicksort is generally consiieéoebe faster than some of sorting
algorithm which possesses a time complexity of @@n) in average case.

The fundamental of quicksort is choosing a valoé partitioning the input data
set to two subsets which one contains input datdlemin size than the chosen value and
the other contains input data greater than theeshwalue. This chosen value is called as
the pivot value. And in each step these dividec dats are sub-divided choosing pivots
from each set. Quicksort implementations are réeeii@nd stop conditions are met when

there is no sub division is possible.

In this attempt, the main idea was to implemepaiallelized quicksort to run on
a multi-core environment and conduct a performameduation. This parallelization is
obtained by using MPI API functionalities to shdhe sorting data set among multi

processes.
1.1 Stepsfollowed:

* Implement an optimized algorithm using MPI to stata.
This algorithm will be a parallelized implementatiof the quicksort algorithm
and it will avoid merging step by dividing inputtgkrough regular sampling.
* Performance evaluation
o Perform sorting sample data sets against sequepiictsort algorithm.
o Perform sorting sample data sets against an abgoritvith initial
portioning and merging.
0 Produce statistical evaluation through result fastiag.

» Evaluate its performance based on logical time dexiles.

e Conclusion.

1.2 Quicksort algorithm

int partition(int *arr, int left, int right) {
int i =1left, j =right;

int tnp;

int pivot = arr[(left + right) / 2];

[* partition */

while (i <=17j)
while (arr[i] < pivot)

i ++;
while (arr[j] > pivot)
it (i <=7j) {
tmp = arr[i];
arr[i] = arr[j];
arr[j] = tnp;
i ++:
J--s
}
) |
return j;

}

void quick_sort(int* arr, int left, int right){
/* recursion */
int part_index = partition(arr, left, right);
if (left < part_index)
qui ckSort (arr, left, part_index);
if (part_index + 1 < right)
qui ckSort (arr, part_index + 1, right);

2. Parallel Quicksort

Not only quicksort has considered being a bettefopming sorting algorithm but it's
also considered to be one of reliable algorithmgkwican adapt to parallelization. With

5

quicksort, partitions can be sorted in parallel aoohbined with operations like merge to
assemble the outputs. The conventional methodsaddllplizing quicksort based on
dividing the initial input to set of sub arrays adidtributes them among the available set
of processes to be sorted sequentially and latéregad using merge steps. Other than
that there has been many researches done on pairadleuicksort by optimizing pivot

selections and various partitioning strategies.

My attempt was to avoid initial scattering of datad distribute data sets among
processes using initial partitioning steps. So wilsavoid the merging steps as the final
output is produced only by gathering the sorted&data from each process.

2.1 Basic implementation steps:

» Perform an initial partitioning of data until ali¢ available processes were given
a subset to sort sequentially

» Sort the received data set by each process inl@aral

» Gather all data, corresponding to the exact pamitil offsets without performing

any merging.

2.2 Initial data partitioning and sub array allocations

The scheme of initial data partitioning containkof@ing steps:

» Each process performs an initial partitioning otadasing pivots regarding if
there’s any process available to share its data set

» Send one part of data to the sharing process andpstrtitioning the remaining
data set if there’s more processes available.

» Else perform a sequential quicksort on the data set

* Send locally sorted data set to its original sender

This scheme requires a proper allocation of pra&sess each partitioning and data

sharing steps. The scheme | used is to allocateadatsidering its rank and a calculation

schema which determines which processes will shareata set.

2.3 Process Allocation scheme

Process Sharing set Sharing process rank calaulatio Process set in each st¢
0 1 0+2 0
0 1,2 0+2,0+72 1
1 3 1+ 2

0 1,2,4 0+2,0+2,0+2 2
1 3,5 1+2,1+7

2 6 2+72

3 7 3+2

0 1,2,8 0+20+2 0+2 0+2 3
1 3,5,9 1+21+21+2

2 6,10 2+2 2+ 2

3 7,11 3+23+2

4 12 4+7

5 13 5+ 2

6 14 6+ 2

7 15 7+ 2

Table 1: Process sharing scheme

So according to the above scheme, processes acatalll using following equation:

Process p with the rank r will share its partitwith the process rank,

> Rank=r+2"

where n satisfies the conditio? " <r < 2"

With this calculated rank, each process will tryfital its data partition sharing process.

If the process is there, then the partition is diviled and shared with the process which

possesses that particular rank. If there is no puatess, then the partition is sequentially

sorted and sent back to the parent process whmaltigshared the sorted set. Each of

these calls is implemented to run recursively.

Choosing which partition to share

In most cases, partitions produced by regular sagphay differ in size. So when any
partitioning is performed to share the data set,laéingest sub partition is kept within the
lead process and the smaller set is sent to tle@vieg process. There are two reasons to

send the smaller partition. They are,

1. It reduces the amount of communication overheattdnsferring the smaller data
set.

2. In process allocation schema, the process thasonsible in partitioning will be
the process next in line to share the data set agedn before the receiving
process. So if any more processes are in the puoisending process has more

chance in sharing its data set than the receiviaggss.

Ex: For a data set to be sorted using three prese@8process will send the smaller
data set to %l partition. Then the remaining process no. 2 wéllassigned to process
no. 0 to share its data set. So befdt@rbcess get a data sharing process, the process
no. 0 who created the partitions has the chan¢eahg another process to share its

data set.

The performance gain was checked using a slightipnged parallel quicksort
implementation where the lead process always kgethia first half of the array. This
altered version ran against the smaller partitirarieg quicksort implementation. Sorting
time tends to be smaller on smaller partition sttaimplementation than the first half of

array sharing implementation.

Diagram 1: Partition sharing scheme

Partition Creater ‘ ‘ Receiver

Diagram 2: Variable partition sharing scheme

3. MPI implementation

Parallel quicksort was implemented using OpenMPhe cof open source MPI
implementations available. And the program is writin C language.

* Function sort_recursive

This function is called recursively by each proceserder to perform the initial
partitioning when a sharing process is availabletamisequentially sort the data set.
Finally it sends the sorted data set to its shashogess.

The pivot for each step is chosen as the elemelexad at [size / 2], which takes the
middle value of the array. Also a specific indeXueais used to keep the number of
increments while calculating the rank of next pssen line to share the data set

recursively.

int sort_recursive(int* arr, int size, int pr_rank, int
max_rank, int rank_index){
MPlI _Status dtln;

int share_pr = pr_rank + pow(2, rank_index); [* Calcul ate the
rank of sharing process*/
rank_i ndex ++; /[*1 ncrenent the count
i ndex*/
i f(share_pr > max_rank){ /*1f no process to share

sort_rec_seq(arr, size);
sequenti al | y*/
return O;

}

int pivot = arr[sizel2]; /* Select the pivot */

int partition_pt = sequential _quicksort(arr, pivot, size,
(sizel2) -1); [* partition array */
int offset = partition_pt + 1;

/* Send partition based on size, sort the remaining partitions,
recei ve sorted partition */

if (offset > size - offset){
MPI _Send((arr + offset), size - offset, MPl::INT, share_pr
, offset, MPI_COVM WORLD);
sort _recursive (arr, offset, pr_rank, nmax_rank,
rank_i ndex) ;

MPI _Recv((arr + offset), size - offset, MPl::INT, share_pr,
MPI _ANY_TAG MPI _COWM WORLD, &dtln);

}
el se{
MPI _Send(arr, offset, MPI::INT, ch pr , tag,
MPI _COVM WORLD) ;
sort _recursive ((arr + offset), size - offset, pr_rank
max_rank, rank_index);
MPI _Recv(arr, offset, MPI::INT, ch_pr, MPI_ANY_TAG
MPI _COW WORLD, &dtln);
}

Except the leading process, all other processéexatcute the following lines of code

10

int* subarray = NULL;
MPI _Status megSt, dtln;
int sub_arr_size = 0;

int index _count = 0;
int pr_source = 0;
whi |l e(pow(2, index_count) <= rank) [* calcul ate the
i ndex_count ++; i ndex_count as
2 " < rank < 2"
n = i ndex_count */

MPl _Probe(MPI _ANY_SOURCE, MPI _ANY TAG MPI _COVM WORLD,

&nsgSt) ;
MPI _Cet _count (&rsgSt, MPI::INT, &sub_arr_size);
pr_source = nsgSt. MPl _SOURCE; /* CGet the

sendi ng process rank
*/

subarray = (int*)malloc(sub_arr_size * sizeof(int));
MPI _Recv(subarray, sub_arr_size, MPl::INT, Ml _ANY_ SOURCE,
MPI _ANY_TAG MPI _COWM WORLD, &dtln);

int pivot = subarray[(sub_arr_size / 2)]; /* Find
the pivot */
sort _rec(subarray, sub_arr_size, rank, size_pool -1,

rec_count); /* sort recursively */
/* send sorted sub array */
MPI _Send(subarray, sub_arr_size, MPl::INT, pr_source,

tag, MPI_COW WORLD) ;
free(subarray);

4. Experimental Results

Quicksort implementation was benchmarked with aalpelr quicksort implementation
with merge and with sequential quicksort implemegataletting them to sort same set of
data in varying sizes. These test results wereegadhby running a batch of sorting tasks
on each test case and averaging all the obtairsedtse

= All these tests were performed on a Linux cluste7-@ore Intel Xeon E5420

processors with 16 GB memory.

The benchmarks were run for following scenarios

» Sorting data sets of 5 — 100 M with five procedsegach implementation.

» Sort data set of 10 M for a process range 1 -11M,for a process range 5 — 70

11

4.1 Sequential implementation

Sequential implementation was the simple quicksdgorithm, runs with a single

process. Each data set was first ran with the sggli@nplementation and then with two

parallel implementations.

4.2 Parallel quicksort with merge

This implementation belongs tuneet C Kataria;s[Parallel Quciksort Implementation

Using MPI and Pthreadsj projectaimed to implement a parallelized quicksort with

minimum cost of merging by using tree structuredgimg. He is currently a graduate

student and more details about his implementatam lee found in his personal page,

http://www.winlab.rutgers.edu/~pkataria/

4) . . .
Quicksort time for varying data set size, numer of processes for
parallel sorting =5
40
35
30 t/ —Sequentia
/\/\/ | sort
25
_n;; ,f/ — Parallel
= 20 / sort
E /J/ /\/\/\/ without
= 15 merge
/ A/A’/v Parallel
sort with
=AY _
10 / \"4 merge
5
0__'IIIIIIIIIIIIIIII\\\IIIIIIIIIIIIIIIIIIIII\\\\IIIIIII
0 10 20 30 4 50 60 70 80 90 100
Date set size (109)
&

Graph 1: Data plot for the sorting times for vagyhata set sizes.

12

Quicksort time for varying data set size, numer of processes for
parallel sorting = 40
40
35
A /\/\/ — Sequential

30 /\/ \"4 sort
g /_/ —— Parallel
4]
2 95 sort
E without
= e merge

/ Parallel
/\ sort with
) / /—JAVA/-\ merge
O
[A,-IN'
- g
= -
0 __'III-FI..;III\\IIIIIIIIIII\\IIIIIIIIIII\IIIIIIIIIIII\III
0 10 20 30 4 50 60 70 80 90 100
Date set size {109)
- J/

Graph 2: Data plot for the sorting times for vagyotata set sizes.

These graphs show the results of sorting dataavigmge of 1-100 M. Each data set was
averaged with multiple runs and the two figures eoeresponding to the results of
running parallel quicksort without merge and witlerge implementations, parallelized
by 5 to 40 processes.

Graphl indicates a lowest running time for paradjeicksort with merge and the time
increment tend to be very smooth and linear. Aredghrallel quicksort without merge

tends to show fluctuations with the increasing sizdata set yet linear.
Graph2 indicates that the two implementations temolw close results, yet the parallel

quicksort without merge implementation shows mucbgularity than the other parallel
implementation.

13

These results show that overall parallel implemtgrawith initial partitioning and
merging outperforms the parallel quicksort impletagéion without merge. Also the fixed
partitioning shows much smoother increment of tiwith increasing data size on less
number of processes. But the parallel quicksorhaout merge shows the opposite
behavior as it gets smoother with the higher nunolb@rocesses.

4 N
Quicksort time for varying processes, for a data set of
10M
3.5
3 4
\ =@ Sequentia
25 \ I sort
G2 \
2 —eo—Parallel
g sort
s 1.5 without
merge
1 Parallel
sort with
merge
0.5 .
0 T T T T T T T T T 1
1 2 3 4 5 6 7 & 9 10
No of processes
&)

Graph 3: Data plot for the varying number of preesas[1 — 10], data set size’ 100 M]

This diagram indicates the results after running parallel implementations with 1 — 10
processes for a random data set df (10 M). Parallel quicksort with initial fixed size
partitioning has again showed better performancégewincreasing the number of

processes and lowest running time was when the auoflprocesses equals to 7. On the

14

other hand, the parallel quicksort implementatiatheut initial fixed partitioning also
seems to show parallelism when number of processess increased but it
underperformed the first one.

This quite explains that fixed partition implemaimn seems to outperform in
small number of processes comparing to the pargletksort without initial fixed
partitioning. When the number of processes was Isnthk fixed partitioning
implementation seems to be more efficient with $mamber of merging steps but the
parallel implementation without initial partitiorgreeems to be not efficient regarding the

unbalanced partitioning and communication overheads

4 N
Quicksort time for varying data set size, numer of processes for
parallel sorting = 40
0.4
0.35
= —)
03 == Sequential
sort
0.25
g
4
E 0.2 —&— Parallel
E sort
0.15 —W e - without
= \,0—0——0"'_.—’_. merge
0.1
Parallel
0.05 sort with
merge
0 T T T T T T T T T T T T T 1
5 30 55
No of processes
\§ J

Graph 4: Data plot for the varying number of preess]5 — 70], data set size’10 M]

15

Above figure shows the results of sorting 1M datéa with increasing the number of
processes from 5 to 70.
Though without merge implementation outperform witkerge implementation at some

value of processes, the lowest time was shown éwith merge implementation.

4.7 Speedup analysis

Speedup = Running time for best sequential algorith

Running time for parallel algorithm

Speedup was estimated based on the results aigd@iM data set. [Graph 3]

No of processes With fixed partition Partition legular sampling
2 1.752 14

3 2.236 1.71

4 2.813 1.73

5 3.148 1.923

6 3.637 2.021

7 4.095 2.141

8 3.938 2.084

9 3.084 2.536

10 3.186 2.656

According to speedup analysis, fixed partition eutprmed the partition by regular
sampling and the highest gained by fixed partiigniand partitioning by regular

sampling implementations were 4.05 and 2.655.

16

5. Time complexity Analysis

With the general assumption of time complexitydequential quicksort = n log n,
Let’s take the best case sort analysis for the aloplementation,
So assuming that each partitioning might createdgual sections,

For a two process running,
T (n) = (n/2) log (n/2)
For three process running,
T (n) = max ((n/2) log (n/2) + (n/4) log (n/4))
= (n/2) log (n /2)
According to table 1, after 4 processes running,
T (n) = (n/4) log (n/4)

Hence for p number of processes,
T (n) = (n/K) log (n / k) where k satisfies £'< p <=2

But since the implementation runs as sharing thallest partition strategy and variable
partitioning sizes, this time analysis can't prakie average running time for the parallel
quicksort without merging. Also adding up the owsti of communication is not taken
to account. Also the experimental results also @nothat this time complexity isn’'t

preserved for the average run of the implementation

17

6. Conclusion

With the performance analysis, it's evident that tiew implementation seems to become

more efficient with a higher number of processes.

Also it could outperform with merge implementationcertain number of processes. But
with the performance basis, the lowest running twes shown by the with merge
implementation for a less number of processes. ditmerge implementation performs

less efficiently with fewer number of processes.

As for the conclusion below points can be highkght

* Initial partitioning can be very crucial in paraltgiicksort with MPI.

After implementing parallel quicksort without irati fixed partitioning and
running it against a counter-implementation, itsdent that the time efficiency
gains from initial fixed petitioning is importan. not, a better way to perform
initial partitioning through regular sampling istali in order to gain higher
performance.

* With MPI, two parallel implementations tend to shiess performance on higher
number of processes since MPI communication ovedheBhis overcome has to
compensate by limiting the amount of running preessaccording to the data set
size.

» Also partitioning through regular sampling, can smwery irregular running time
due to variable partitioning in each step. Alsathiay leads to a worst case of
highly unbalanced data distributions which mightdeto inefficient time
performances.

» With variable partitioning in each step considerthg available processes, some
processes may not be efficiently used. In facttfer worst case with a higher
number of processes for a small data set, somegses may leave out without

any data to sort sequentially which shows ineffitigse of processes.

18

So this analysis emphasized the point of initiaftipaning combined with regular
sampling that can partition input data set to ecuudpsets is important in order to
improve performance in parallel quicksort. Also mqarallelized merging and regular

sampling can improve performance.

References

[1]. Puneet C KataridRarallel quicksort implementation using MPI andrB#uls

[2]. Hanmao Shi Jonathan Schaeffer, Parallel SptiwnRegular Sampling

[3]. Philippas Tsigas and Yi Zhang. A Simple, Fast Felrthplementation of Quicksort
and its Performance Evaluation on SUN Emieeft0000

19

