
1

Parallel Quicksort using MPI
&

Performance Analysis

Prasad Perera
prasadcse@gmail.com

2

Table of Contents

1. Introduction..4

1.1 Steps followed..4

1.2 Quicksort algorithm ...5

2. Parallel Quicksort...5

2.1 Basic implementation steps..6

2.2 Initial data partitioning and sub array allocation ...6

2.3 Process Allocation scheme..7

3. MPI implementation..9

4. Experimental Results...11

4.1 Sequential implementation...12

4.2 Parallel quicksort with merge..12

4.7 Speedup analysis..16

5. Time complexity Analysis...17

6. Conclusion...18

7. References..19

3

Abstract

This is an individual effort on parallelizing the quicksort algorithm using MPI (Message

Passing Interface) to sort data by sharing the partitions generated from regular sampling.

The basic idea was to avoid the initial partitioning of data and merging step of sorted

partitions in different processes. And finally to conduct a performance evaluation for the

implementation. This evaluation was based on comparing sorting times with an algorithm

which uses initial partitioned set between processes and to the simple sequential sorting

algorithm.

4

1. Introduction

Quicksort is a well known algorithm used in data sorting scenarios developed by C. A. R.

Hoare. It has the time complexity of O (n log n) on average case run and O (n2) on worst

case scenario. But quicksort is generally considered to be faster than some of sorting

algorithm which possesses a time complexity of O (n log n) in average case.

 The fundamental of quicksort is choosing a value and partitioning the input data

set to two subsets which one contains input data smaller in size than the chosen value and

the other contains input data greater than the chosen value. This chosen value is called as

the pivot value. And in each step these divided data sets are sub-divided choosing pivots

from each set. Quicksort implementations are recursive and stop conditions are met when

there is no sub division is possible.

 In this attempt, the main idea was to implement a parallelized quicksort to run on

a multi-core environment and conduct a performance evaluation. This parallelization is

obtained by using MPI API functionalities to share the sorting data set among multi

processes.

1.1 Steps followed:

• Implement an optimized algorithm using MPI to sort data.

This algorithm will be a parallelized implementation of the quicksort algorithm

and it will avoid merging step by dividing input set through regular sampling.

• Performance evaluation

o Perform sorting sample data sets against sequential quicksort algorithm.

o Perform sorting sample data sets against an algorithm with initial

portioning and merging.

o Produce statistical evaluation through result forecasting.

5

• Evaluate its performance based on logical time complexities.

• Conclusion.

1.2 Quicksort algorithm

 int partition(int *arr, int left, int right) {
 int i = left, j = right;
 int tmp;
 int pivot = arr[(left + right) / 2];
 /* partition */

 while (i <= j) {
 while (arr[i] < pivot)
 i++;
 while (arr[j] > pivot)
 j--;
 if (i <= j) {
 tmp = arr[i];
 arr[i] = arr[j];

 arr[j] = tmp;
 i++;
 j--;
 }
 }
 return j;

}

void quick_sort(int* arr, int left, int right){
 /* recursion */
 int part_index = partition(arr, left, right);

if (left < part_index)
quickSort(arr, left, part_index);

 if (part_index + 1 < right)
 quickSort(arr, part_index + 1, right);
}

2. Parallel Quicksort

Not only quicksort has considered being a better performing sorting algorithm but it’s

also considered to be one of reliable algorithms which can adapt to parallelization. With

6

quicksort, partitions can be sorted in parallel and combined with operations like merge to

assemble the outputs. The conventional methods of parallelizing quicksort based on

dividing the initial input to set of sub arrays and distributes them among the available set

of processes to be sorted sequentially and later gathered using merge steps. Other than

that there has been many researches done on parallelizing quicksort by optimizing pivot

selections and various partitioning strategies.

My attempt was to avoid initial scattering of data and distribute data sets among

processes using initial partitioning steps. So this will avoid the merging steps as the final

output is produced only by gathering the sorted set of data from each process.

2.1 Basic implementation steps:

• Perform an initial partitioning of data until all the available processes were given

a subset to sort sequentially

• Sort the received data set by each process in parallel.

• Gather all data, corresponding to the exact partitioned offsets without performing

any merging.

2.2 Initial data partitioning and sub array allocations

The scheme of initial data partitioning contains following steps:

• Each process performs an initial partitioning of data using pivots regarding if

there’s any process available to share its data set.

• Send one part of data to the sharing process and start partitioning the remaining

data set if there’s more processes available.

• Else perform a sequential quicksort on the data set.

• Send locally sorted data set to its original sender.

7

This scheme requires a proper allocation of processes in each partitioning and data

sharing steps. The scheme I used is to allocate data considering its rank and a calculation

schema which determines which processes will share the data set.

2.3 Process Allocation scheme

Process Sharing set Sharing process rank calculation Process set in each step
0 1 0 + 20 0
0
1

1,2
3

0 + 20 , 0 + 21

1 + 21
1

0
1
2
3

1,2,4
3,5
6
7

0 + 20 , 0 + 21 , 0 + 22
1 + 21 , 1 + 22

2 + 22

3 + 22

2

0
1
2
3
4
5
6
7

1,2,8
3,5,9
6,10
7,11
12
13
14
15

0 + 20 0 + 21 0 +22 0 +23

1 + 21 1 + 22 1 + 23

2 + 22 2 + 23

3 + 22 3 + 23

4 + 23

5 + 23

6 + 23

7 + 23

3

Table 1: Process sharing scheme

So according to the above scheme, processes are allocated using following equation:

Process p with the rank r will share its partition with the process rank,

� Rank = r + 2n where n satisfies the condition: 2 n-1 ≤ r < 2n

With this calculated rank, each process will try to find its data partition sharing process.

If the process is there, then the partition is sub divided and shared with the process which

possesses that particular rank. If there is no such process, then the partition is sequentially

sorted and sent back to the parent process who originally shared the sorted set. Each of

these calls is implemented to run recursively.

8

Choosing which partition to share

In most cases, partitions produced by regular sampling may differ in size. So when any

partitioning is performed to share the data set, the largest sub partition is kept within the

lead process and the smaller set is sent to the receiving process. There are two reasons to

send the smaller partition. They are,

1. It reduces the amount of communication overhead by transferring the smaller data

set.

2. In process allocation schema, the process that is responsible in partitioning will be

the process next in line to share the data set once again before the receiving

process. So if any more processes are in the pool, the sending process has more

chance in sharing its data set than the receiving process.

Ex: For a data set to be sorted using three processes, 0th process will send the smaller

data set to 1st partition. Then the remaining process no. 2 will be assigned to process

no. 0 to share its data set. So before 1st process get a data sharing process, the process

no. 0 who created the partitions has the chance of having another process to share its

data set.

The performance gain was checked using a slightly changed parallel quicksort

implementation where the lead process always keeping the first half of the array. This

altered version ran against the smaller partition sharing quicksort implementation. Sorting

time tends to be smaller on smaller partition sharing implementation than the first half of

array sharing implementation.

9

Diagram 1: Partition sharing scheme

Diagram 2: Variable partition sharing scheme

3. MPI implementation

Parallel quicksort was implemented using OpenMPI, one of open source MPI

implementations available. And the program is written in C language.

• Function sort_recursive

This function is called recursively by each process in order to perform the initial

partitioning when a sharing process is available or to sequentially sort the data set.

Finally it sends the sorted data set to its sharing process.

The pivot for each step is chosen as the element indexed at [size / 2], which takes the

middle value of the array. Also a specific index value is used to keep the number of

increments while calculating the rank of next process in line to share the data set

recursively.

10

int sort_recursive(int* arr, int size, int pr_rank, int
max_rank, int rank_index){
MPI_Status dtIn;
int share_pr = pr_rank + pow(2, rank_index); /* Calculate the

rank of sharing process*/
rank_index ++; /*Increment the count

index*/

if(share_pr > max_rank){ /*If no process to share

sort_rec_seq(arr, size);
 sequentially*/

return 0;
}

 int pivot = arr[size/2]; /* Select the pivot */

 int partition_pt = sequential_quicksort(arr, pivot, size,
(size/2) -1); /* partition array */
 int offset = partition_pt + 1;

/* Send partition based on size, sort the remaining partitions,
receive sorted partition */

 if (offset > size - offset){

MPI_Send((arr + offset), size - offset, MPI::INT, share_pr
, offset, MPI_COMM_WORLD);
sort_recursive (arr, offset, pr_rank, max_rank,
rank_index);

MPI_Recv((arr + offset), size - offset, MPI::INT, share_pr,
MPI_ANY_TAG, MPI_COMM_WORLD, &dtIn);

 }
 else{

MPI_Send(arr, offset, MPI::INT, ch_pr , tag,
MPI_COMM_WORLD);
sort_recursive ((arr + offset), size - offset, pr_rank,

max_rank, rank_index);

MPI_Recv(arr, offset, MPI::INT, ch_pr, MPI_ANY_TAG,
MPI_COMM_WORLD, &dtIn);

 }

Except the leading process, all other processes will execute the following lines of code

11

 int* subarray = NULL;
 MPI_Status msgSt, dtIn;
 int sub_arr_size = 0;
 int index_count = 0;
 int pr_source = 0;

while(pow(2, index_count) <= rank) /* calculate the
index_count ++; index_count as

2 n-1 ≤ rank < 2n

 n = index_count */

MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,
&msgSt);

 MPI_Get_count(&msgSt, MPI::INT, &sub_arr_size);
 pr_source = msgSt.MPI_SOURCE; /* Get the

sending process rank
*/

 subarray = (int*)malloc(sub_arr_size * sizeof(int));

MPI_Recv(subarray, sub_arr_size, MPI::INT, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD, &dtIn);

 int pivot = subarray[(sub_arr_size / 2)]; /* Find

the pivot */
sort_rec(subarray, sub_arr_size, rank, size_pool -1,
rec_count); /* sort recursively */
/* send sorted sub array */

 MPI_Send(subarray, sub_arr_size, MPI::INT, pr_source,
tag, MPI_COMM_WORLD);

 free(subarray);

4. Experimental Results

Quicksort implementation was benchmarked with a parallel quicksort implementation

with merge and with sequential quicksort implementation letting them to sort same set of

data in varying sizes. These test results were gathered by running a batch of sorting tasks

on each test case and averaging all the obtained results.

� All these tests were performed on a Linux cluster of 7-core Intel Xeon E5420

processors with 16 GB memory.

 The benchmarks were run for following scenarios

• Sorting data sets of 5 – 100 M with five processes for each implementation.

• Sort data set of 10 M for a process range 1 - 10 , 1 M for a process range 5 – 70

12

4.1 Sequential implementation

Sequential implementation was the simple quicksort algorithm, runs with a single

process. Each data set was first ran with the sequential implementation and then with two

parallel implementations.

4.2 Parallel quicksort with merge

This implementation belongs to Puneet C Kataria’s, [Parallel Quciksort Implementation

Using MPI and Pthreads] a project aimed to implement a parallelized quicksort with

minimum cost of merging by using tree structured merging. He is currently a graduate

student and more details about his implementation can be found in his personal page,

http://www.winlab.rutgers.edu/~pkataria/

Graph 1: Data plot for the sorting times for varying data set sizes.

13

Graph 2: Data plot for the sorting times for varying data set sizes.

These graphs show the results of sorting data with a range of 1-100 M. Each data set was

averaged with multiple runs and the two figures are corresponding to the results of

running parallel quicksort without merge and with merge implementations, parallelized

by 5 to 40 processes.

Graph1 indicates a lowest running time for parallel quicksort with merge and the time

increment tend to be very smooth and linear. And the parallel quicksort without merge

tends to show fluctuations with the increasing size of data set yet linear.

Graph2 indicates that the two implementations tend show close results, yet the parallel

quicksort without merge implementation shows much irregularity than the other parallel

implementation.

14

These results show that overall parallel implementation with initial partitioning and

merging outperforms the parallel quicksort implementation without merge. Also the fixed

partitioning shows much smoother increment of time with increasing data size on less

number of processes. But the parallel quicksort without merge shows the opposite

behavior as it gets smoother with the higher number of processes.

Graph 3: Data plot for the varying number of processes [1 – 10], data set size 107 [10 M]

This diagram indicates the results after running two parallel implementations with 1 – 10

processes for a random data set of 107 (10 M). Parallel quicksort with initial fixed size

partitioning has again showed better performances while increasing the number of

processes and lowest running time was when the number of processes equals to 7. On the

15

other hand, the parallel quicksort implementation without initial fixed partitioning also

seems to show parallelism when number of processes were increased but it

underperformed the first one.

 This quite explains that fixed partition implementation seems to outperform in

small number of processes comparing to the parallel quicksort without initial fixed

partitioning. When the number of processes was small, the fixed partitioning

implementation seems to be more efficient with small number of merging steps but the

parallel implementation without initial partitioning seems to be not efficient regarding the

unbalanced partitioning and communication overheads.

Graph 4: Data plot for the varying number of processes [5 – 70], data set size 106 [1 M]

16

Above figure shows the results of sorting 1M data set with increasing the number of

processes from 5 to 70.

Though without merge implementation outperform with merge implementation at some

value of processes, the lowest time was shown by the with merge implementation.

4.7 Speedup analysis

Speedup = Running time for best sequential algorithm

 Running time for parallel algorithm

Speedup was estimated based on the results of sorting 10 M data set. [Graph 3]

No of processes With fixed partition Partition by regular sampling

2 1.752 1.4

3 2.236 1.71

4 2.813 1.73

5 3.148 1.923

6 3.637 2.021

7 4.095 2.141

8 3.938 2.084

9 3.084 2.536

10 3.186 2.656

According to speedup analysis, fixed partition outperformed the partition by regular

sampling and the highest gained by fixed partitioning and partitioning by regular

sampling implementations were 4.05 and 2.655.

17

5. Time complexity Analysis

With the general assumption of time complexity for sequential quicksort = n log n,

Let’s take the best case sort analysis for the above implementation,

So assuming that each partitioning might create two equal sections,

For a two process running,

T (n) = (n/2) log (n/2)

For three process running,

T (n) = max ((n/2) log (n/2) + (n/4) log (n/4))

 = (n/2) log (n /2)

According to table 1, after 4 processes running,

T (n) = (n/4) log (n/4)

Hence for p number of processes,

T (n) = (n / k) log (n / k) where k satisfies = 2k-1 < p < = 2k

But since the implementation runs as sharing the smallest partition strategy and variable

partitioning sizes, this time analysis can’t prove the average running time for the parallel

quicksort without merging. Also adding up the overhead of communication is not taken

to account. Also the experimental results also proven that this time complexity isn’t

preserved for the average run of the implementation.

18

6. Conclusion

With the performance analysis, it’s evident that the new implementation seems to become

more efficient with a higher number of processes.

Also it could outperform with merge implementation in certain number of processes. But

with the performance basis, the lowest running time was shown by the with merge

implementation for a less number of processes. Without merge implementation performs

less efficiently with fewer number of processes.

As for the conclusion below points can be highlighted.

• Initial partitioning can be very crucial in parallel quicksort with MPI.

After implementing parallel quicksort without initial fixed partitioning and

running it against a counter-implementation, it’s evident that the time efficiency

gains from initial fixed petitioning is important. If not, a better way to perform

initial partitioning through regular sampling is vital in order to gain higher

performance.

• With MPI, two parallel implementations tend to show less performance on higher

number of processes since MPI communication overheads. This overcome has to

compensate by limiting the amount of running processes according to the data set

size.

• Also partitioning through regular sampling, can cause very irregular running time

due to variable partitioning in each step. Also this may leads to a worst case of

highly unbalanced data distributions which might lead to inefficient time

performances.

• With variable partitioning in each step considering the available processes, some

processes may not be efficiently used. In fact for the worst case with a higher

number of processes for a small data set, some processes may leave out without

any data to sort sequentially which shows inefficient use of processes.

19

So this analysis emphasized the point of initial partitioning combined with regular

sampling that can partition input data set to equal subsets is important in order to

improve performance in parallel quicksort. Also more parallelized merging and regular

sampling can improve performance.

References

[1]. Puneet C Kataria, Parallel quicksort implementation using MPI and Pthreads

[2]. Hanmao Shi Jonathan Schaeffer, Parallel Sorting by Regular Sampling

[3]. Philippas Tsigas and Yi Zhang. A Simple, Fast Parallel Implementation of Quicksort

 and its Performance Evaluation on SUN Enterprise10000

