I'm trying to plot the KNN algorithm for a specific dataset that has 38 features where 2 features are target classes. However, the features are numeric types and target classes are strings that have the values of ("Yes", "No"). How can I make that happen?
NOTE: the dataset is CSV type that has 709 records.
What I have tried:
I have been messing with this code but I want to implement the KNN algorithm by uploading a different dataset from my device called PC1 dataset as mentioned above. Also, I want to assign the X and y values to be compatible with my dataset which is PC1.csv
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn import datasets
import numpy as np
# Initializing Classifiers
clf1 = LogisticRegression(random_state=1,
solver='newton-cg',
multi_class='multinomial')
clf2 = RandomForestClassifier(random_state=1, n_estimators=100)
clf3 = GaussianNB()
clf4 = SVC(gamma='auto')
# Loading some example data
iris = datasets.load_iris()
X = iris.data[:, [0,2]]
y = iris.target
import matplotlib.pyplot as plt
from mlxtend.plotting import plot_decision_regions
import matplotlib.gridspec as gridspec
import itertools
gs = gridspec.GridSpec(2, 2)
fig = plt.figure(figsize=(10,8))
labels = ['Logistic Regression', 'Random Forest', 'Naive Bayes', 'SVM']
for clf, lab, grd in zip([clf1, clf2, clf3, clf4],
labels,
itertools.product([0, 1], repeat=2)):
clf.fit(X, y)
ax = plt.subplot(gs[grd[0], grd[1]])
fig = plot_decision_regions(X=X, y=y, clf=clf, legend=2)
plt.title(lab)
plt.show()