|
I think you can assume that any microcontroller is Turing complete. So in theory, any microcontroller can replace even the most huge supercomputers. And every computer of any intermediate rank.
But then again: In theory, there is no difference between theory and practice, but in practice there may be.
Microcontrollers tend to have a very short paper tape. Clock speeds may be measured in kHz; memory sizes in kilobytes. (Well, there are as well microcontrollers running at quite a few MHz and addressing gigabytes, but some of them could deserve being called millicontrollers ...).
Microcontrollers are plain CPUs, but often packed with a lot of I/O circuitry on the chip, and some RAM / ROM / Flash - maybe all that the CPU needs in typical applications. Frequently, all that is needed is integrated on the chip, and it may be referred to as a SoC - "System on Chip".
For the car: Anything that can be read as a digital signal can be read by a microcontroller. Many microcontrollers also have one or more analog-to-digital (A/D) converters on-chip, so the signal need not even be digital outside the chip (but the handling of the reading is always done after it has been digitized). Anything that can be controlled through a digital signal can be controlled - call it 'changed', if you prefer - by a microcontroller. Likewise, microcontrollers may have on-chip digital-to-analog (D/A) converters, for (car or other) components that require an analog control signal. In a modern car, lots of components are not manipulated directly by the driver. The driver sends a signal to a controller requesting it to take the necessary steps to obtain some desired result, whether to start the engine, operate the ABS breaking system, or flash the blinkers.
This goes for almost all modern electronics: Today you hardly ever turn a potentiometer or press a switch to make a current flow. You still have dials, but they only serve as signal generators for a processor (/microcontroller) that in turn sends the "real" control signal to the component, possibly after some checking, adjustments, or reshaping.
Most likely, the rich set of I/O facilities typically integrated into the microcontroller makes it far better suited to such control tasks (guess what has inspired its name!) than, say, the typical CPUs found in desktop computers. A microcontroller usually runs a fixed set of software functions, and perform a fixed set of tasks - you boot it up with the software it will need, and do not add any more later. Knowing the tasks it will run, you will know how powerful it has to be, and you select a microcontroller accordingly. For battery driven applications you may also select clock frequency accordingly - the lower the frequency, the longer the battery life.
|
|
|
|
|
And you expect an answer to this without knowing anything at all about your hardware, the O/S it's running, whether it's a NAS, which vendor it is, or anything else that might be useful?
|
|
|
|
|
What happens when you try the --remove option?
|
|
|
|
|
I have done this successfully in the past using the edit feature on the grub menu. As far as I am aware UEFI only controls which device the system boots from.
|
|
|
|
|
Member 14968771 wrote: I need somebody to tell me why it works the way it does on my hardware. And how are we expected to do that, given we have no access to your system?
|
|
|
|
|
|
Sorry, I cannot offer any suggestions beyond what is in that link. But I am a little concerned as to all those different devices in use on your system. Maybe it's time for a complete reinstall from clean.
|
|
|
|
|
Sorry, I have use ubuntu in multi-boot situations a number of times and have never encountered anything like the situation you are showing. I can only suggest you find a specialist Linux support website where you may find someone with a deeper knowledge.
|
|
|
|
|
|
1. If hci_get_route is unsuccessful, it returns a device_id [0..n] or -1.
Hci_open_dev returns a socket or -1 in the event of an error.
3. The device_id zero is legitimate.
|
|
|
|
|
That's easy enough to test. Turn on a bluetooth device. Do not pair or connect, and run a scan. I think you'll find that the scan reports the device presence.
My expectations are:
scan - find any nearby device with bluetooth receiver turned on - may or may not report devices that are paired to other servers and not soliciting for connection
pair - establish a connection to a scanned device that is soliciting for a connection
connected - a pairing has been established and the server can communicate with the device.
Keep Calm and Carry On
|
|
|
|
|
Why should that be dangerous? Windows updated here and there was a power failure.
(Do not turn of your machine?)
It just kept working.
Bastard Programmer from Hell
"If you just follow the bacon Eddy, wherever it leads you, then you won't have to think about politics." -- Some Bell.
|
|
|
|
|
Member 14968771 wrote: How safe or dangerous would it be to stop and restart the
Linux Bluetooth service itself ?
It should not affect the running of the Linux system at all. It might leave any connected bluetooth devices "orphaned", I.E. with a connection that the kernel doesn't know about, but I really do not know. You almost certainly can't damage the linux system beyond needing a reboot to get back to where you were, so if I were you I'd try it and see what effect it has. In particular I'd look to see if currently connected devices keep working, and if the stuck process recovers quickly after the restart. I suspect that restarting the service won't affect the stuck hcitool process. It probably has all it needs to do its work, so restarting the bluetooth service won't affect it. You should probably take a look at what hcitool is doing when its stuck - it may be a bug in the process, which you could report to the developer, or it may be due to some bluetooth device not properly implementing the discovery protocols, which leads to problems, or, well, anything!
Keep Calm and Carry On
|
|
|
|
|
A "stack" is the set of programs and/or system services needed to supply a given end-user (in this case) service.
As I understand it, for bluez there's
User programs : e.g. hcitool
System software : e.g. whatever system processes are needed to monitor/provide bluetooth services
System libraries : e.g. libbluetooth this provides interfaces for both system and user programs
Kernel module : e.g. bluetooth module, which provides the kernel side implementation details
As you can see, this forms a "stack", with each layer needing services from the layer below it to provide the services it needs to the layer above.
Keep Calm and Carry On
|
|
|
|
|
Member 14968771 wrote: With that assumption - Would manual backup , not automatic as RAID does, be more productive>? It takes time to restore a backup, and all of IT at the coffeemachine, waiting for you. That's expensive.
Member 14968771 wrote: Then there are tools which can be optioned to do just backup - sort of semi-automatically. RAID isn't a form of backup. It's redunancy. And drive may fail, and no user notices. No need to talk backups.
Mine is based on Linux and cheap pendrives. I never backup.
Bastard Programmer from Hell
"If you just follow the bacon Eddy, wherever it leads you, then you won't have to think about politics." -- Some Bell.
|
|
|
|
|
RAID does not replace the need for a backup.
RAID5 is protects against a SINGLE drive failure. If a second drive fails while a previous drive is still failed or is in the process of rebuilding after replacement, you will lose data.
|
|
|
|
|
Think of RAID as providing long term reliability. A RAID cluster can normally survive at least one drive going bad. A backup, on the other hand, is what you need in the event of anything from "finger trouble" erasing data, or a bug writing bad data, to a critical systems failure, such as a flood or file, from which you need to rebuild your operating environment.
Keep Calm and Carry On
|
|
|
|
|
If the only way to loose your files is a hard disk failure, then you may consider RAID5 to be a "backup" solution (the "backup" being stored in the redundancy bits of the non-crashed disks.
For all other issues - fire, flooding, machine/disk stolen/lost, inadvertent file deletion or content modification, ransom virus, discovering that a virus has infected a lot of your files, ... - you need a decent backup. For a great number of the risks, you also need offline, offside backup. You need frequent backup, at least daily, which implies that you need incremental backup.
And everyone should know The Tao of Backup[^] - Old, but as valid as ever.
|
|
|
|
|
Hello,
If you want to clone or backup a partition using Gparted then follow the given steps.
Notes:-
a) Target Partition you need to copy/paste is not mounted.
b) For cloning partition, you need to boot PC using GParted Live CD.
1. Download GParted ISO file & burn it to a CD.
2. Boot your PC using that CD.
3. Then it will automatically boot using the GParted Live (Default settings).
4. Now select Don't touch keymap and click OK.
5. Now GParted interface will open and then right-click on the partition you want to backup and select Copy.
6. After that, select the second disk and right-click on it & select Paste option.
Note:- If you are using the unallocated space then GParted will ask you set how much space to use.
Hope it helps.
|
|
|
|
|
You could try this Hardware and Devices forum. I've moved your post here.
Thanks,
Sean Ewington
CodeProject
|
|
|
|
|
What makes a microprocessor different from a microchip? Is is the ability of a microprocessor to load information into transistors, use it/process it and then reset it`s state so that new information may be loaded and used again. Microchips are just an entity meant to direct information based on a hardcoded algorithm, rather than execute mathematical operations. Is this exact?
|
|
|
|
|
You're comparing apples to oranges.
A "microchip" (nobody uses this term anymore) is any small wafer with a defined electronic functionality, like a microprocessor.
A microprocessor is just a chip with the defined functionality of information transformation and action.
|
|
|
|
|
I may be reading this wrong.. You saying a chip is a microprocessor, and then that a microprocessor is a chip.
May I argue, that in this case and wording, an apple is an orange, because an orange is an apple?
Bastard Programmer from Hell
"If you just follow the bacon Eddy, wherever it leads you, then you won't have to think about politics." -- Some Bell.
|
|
|
|
|
No, not circular. Layers.
You can't have the processor without it being made out of a chip.
There's tons of other chips out there that are not processors, like arrays of AND gates, and whatnot.
|
|
|
|
|
So a bag of chips makes a processor?
And a chip never a processor, but multiple are.
I'm gonna run and duck before asking if a chip can be a multiprocessor
Bastard Programmer from Hell
"If you just follow the bacon Eddy, wherever it leads you, then you won't have to think about politics." -- Some Bell.
|
|
|
|
|