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Summary 
 
An Embedded System simple Operating System Framework that allows rapid 
development of applications build for AVR family but can be ported to other 
architectures easily enough. In this article I will describe the concepts and the 
structure of this OS and also I will provide an example application in order for the 
reader to understand the simplicity of building new stuff easily. 
 

Introduction 

Embedded Systems is a very interesting field. You can do things using hardware and 
software that everybody gets impressed when they see them, unless the beauty is well 
hidden. Along with their problems, limitations and special requirements, if you 
repetitively build such systems, you have some common denominator on each design. 
I always used a system tick timer and a Uart for example. This is why I choose to 
build an OS core framework that would allow me to build faster applications without 
being too complex. This OS does not do pre-emptive multitasking. Instead it is a 
round-robin co-operative system ie. Each task either does something or exits if it is 
waiting new data (no blocking). It is very simple with very low memory footprint and 
also you can remove or add components very easily, ready to use it in your next 
project. With this OS in hand I could develop my small applications very fast because 
when I already had the basics ready to run the only piece missing was my pure 
application: What I needed to do, which many times was a one or two pages program. 
I could write it and have it up and running in a few days… 
 

Background 
 
When I started to work with embedded systems I wrote assembly language and we 
had microcontrollers with EPROM for program memory and very little RAM to use 
of. In every project I almost had to use a system tick timer and not a few times a 
UART to communicate with the host PC. Around the end of the 90’s with the 
introduction of AVR I switched to ISP (In-System Programming). No more bulky 
EPROM erasers, easy programming in a few seconds etc. However back then, 
memory continued to be limited. During my porting of 8051 codes to AVR I needed a 
few things. A system tick timer and a Uart. My next problem was debugging. 
Although there was an AVR simulator from ATMEL I could not test my application 
when I had to take inputs from external environment. So in order to debug more easily 
I build a very small footprint monitor: just read/write ports, memory and exercise 
external peripherals. This debugger was an integral part of any new build. Later on I 
moved to C and thus I re-write once more most of my code to C. Also as I added more 
and more peripherals and program memory was precious I began configuring my tiny 
kernel to add or remove components with #defines. The end result was to have a 
platform that allowed me to build fast my applications. I just have all the 
infrastructure support and I was focused on building the actual application. I only 
used simulator for particular pieces of codes (more to see what the actual C statement 
do). During debugging I use my monitor, printf to serial port and of course 
multimeters, oscilloscopes and … LEDs(!) from the hardware side if I need to. 
 
Also as I am using GCC for compiling I do not use an IDE for AVR development. I 
have make files for building and configuring my builds and I use my favorite editor to 



do my coding. So this framework can be ported to any microcontroller theoretically 
(ie. PIC, ARM etc). In fact I have ported variants to ARM and ColdFire 
processors/controllers. Of course you are free to use your favorite IDE. 
 
As memory was limited and I did not need the complexity of pre-emptive 
multitasking the philosophy of this OS is that each task checks if it has any input to 
process, if there is something to do it just executes otherwise it returns to the round-
robin main. The advantage is that this is very scalable and you don’t worry for 
complex things, it is very efficient for RAM and also there is no context switch so you 
save execution time. The drawback of course is that the worst case execution (all tasks 
execute) should be small enough (preferably less than the system tick period), but this 
depend from your application! You might be able to break this rule for once in a 
while. However I am avoiding doing that and I believe for most projects the timing of 
this loop should not be problem.  
 

Description 
 
Aim of the project 
Aim of the project was to have a platform that was scalable and allowed rapid 
application development. I finally wrote it in C so it is portable in a way. You have to 
write the main peripherals for each new processor which is the main pain. However 
after having the core up and running you can benefit from this structure to have it as a 
base project where you can build your new applications. As I build this for AVR 
initially I name it “AVRILOS”: AVR ILias Operating System. I am assuming that you 
have an AVR hardware ready. For your reference and because various I/O are mapped 
to specific ports (although you can easily change them) I provide my basic schematic 
which again is replicated (like AVRILOS) over projects more or less with additions 
for my particular problem.  
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Tools 
The tools I use for AVRILOS are: 

1. (SW) WinAVR (AVR GCC for windows). 
2. (SW) Atmel AVR Studio (for Simulation). 
3. (SW) Your preferable Editor. 
4. (SW) Terminal Program (ie. Terminal, PuTTY). 
5. (SW) Programmer software (AVRDude is already included in WinAVR 

but you might use AVREAL32 if you want). 
6. (HW) Hardware Board where you controller lives! 
7. (HW) Programmer Dongle. 
8. (HW) USB/RS232-TTL Serial Level Converter for connecting to Monitor. 

 
Optionally I have used some extra tools: 

1. (SW) CVTFPGA (for integrating serial bitstreams of Xilinx Spartan 
FPGAs to my code, more on this later) 

2. (SW) Hexbin3 
3. GNUWIN32 (for makefiles if I don’t use the WinAVR ie. Other compiler 

packages like MPLAB) 
4. (SW) Python and Python Wx for building host applications. 
5. (HW) Oscilloscope (recommended) 
6. (HW) Multimeter (nothing less than that!) 
7. Anything else you can imagine and fits. 

 
AVRILOS 

 
Directory Structure 
The directory structure is as follows: 
 

 
 
There are two major directories, HW and SW. 

1. HW is the directory where all my hardware development is done. This 
includes board schematic & PCB files as well as FPGA design. 

2. SW is the software directory which contains directory name of the 
processor used, so I know which processor is used in each project after 
many years. Also I might put here host software (in another directory 
called host). 



 
Let’s concentrate on this directory structure of avr16. AVR16 refers to ATMega16 
AVR. You could name it as you wish. Because the compilers have a tendency to 
generate many intermediate files I don’t want these to interfere with my source files. 
So I have included three directories specifically for this purpose: 

1. build.dep: Here the dependencies of the C files are placed. These are auto-
generated by the makefile. 

2. build.err: Here I instruct the compiler to put any error files in order to track 
them if I need them. 

3. build.obj: Here I place the object files of each module. Also the final .elf 
file. From the MAP file I can find the memory location of any variable and 
use it in my monitor for inspection. 

4. build.lst: Listing file of each module. 
5. build.rom: final programming files ready to be used for the device 

programming. 
 
The root makefile (named makefile) resides on the root of avr16.  
The cfg directory contains all the satellite makefiles. These files contains the 
configuration options, compiler commands, etc. 
 
The src directory is what you are expecting for. The source files. There we have: 

1. Applic: The main file Kernel.c which contains the “scheduler”. 
Initialization and main loop are here. Also my specific application c files 
are placed here as well.  

2. peripheint: Internal peripherals of the microcontrollers. These are timer, 
uart etc. 

3. periphext: External peripherals outside of the microcontroller. These might 
be smart cards, LPC flash, SPI devices etc. 

4. utils: Contains many type conversion tools (hex2bin, bin2hex), delays etc. 
Of course you might use the stdlib sprintf instead if you have enough 
memory space available.  

5. debug: Here I have my monitor debugger and in addition an extended 
debug file which I have functions individual enabled or disabled for 
external peripherals that I might use. If I don’t use them then I just disable 
the corresponding functions and I save some memory space. 

6. include: Here I have global definitions and settings. Also pin/port 
allocation for each peripheral used if this is programmable. 

 
Description of Kernel 
 
The Kernel.c contains the initialization code and the main loop. During then startup 
the Kernel executes the various initializations of each module/peripheral. There is no 
one initialization file for all modules. Instead each module modifies its own bits in its 
I/O registers with Read & Modify instructions. This way each peripheral does not 
interferes with the others unless there is a port conflict. This allows more modular 
design and easy addition/removal of modules. 
 
The scheduler does a round-robin execution of the tasks we need to. Each task checks 
if should be triggered due to some flag like the SysTick timer (In periphint/Timer0.c): 
  



if ( ( v_SysStat & (1 << b_SysTick) ) != 0)  
 

Checks to see that the timer interrupt have flagged b_SysTick (Bit) in v_SysStat 
(Variable), if no just exits. If yes executes all its timer functions it needs to. 
Another case would be to test if there are any new data in the serial port (like the 
applic/serial/SerApp.c) does and exit if nothing is there. 
 
The modules that I almost always have here are SysTick (performs software timers for 
mS, Led Alive etc), debugger (monitor for debugging), SysADC which captures all 8 
channels in sequence and thus the application just read the memory locations for ADC 
data, SerApp which is a small serial command application. Also we have the 
capability to run the application either on every main loop or we might select to run 
the application every n-times (which is when the LED flashes): 

 
if ( ( v_SysStat & (1 << b_AppTick) ) != 0) 

 
This allows the application to use a simple counter as delays or timeouts because the 
action of modifying (increment/decrement) is done every SysTick. Of course with a 
slight modification you can have a different pace for LedAlive and the application. 
 
Finally for low power application I have included a sleep command at the end of the 
loop. If there is no interrupt active the system will go to low power mode until an 
event happens. 
 
So in order to make a new task (application, device etc) you need to know that the 
new element should not block the system waiting for too-long. Specifically the 
execution delay of all the functions should not exceed the SysTick timing. If it does 
you have too alternatives: Either increase the Systick interval or reduce the blocking 
time.  
 
In my experience I haven’t had the need to trim these timing for any of my projects 
until now. 
 
Another concept I am using is that my interrupt routines are minimal. For example the 
timer0 interrupt just sets a flag and exits. The main loop will execute the SysTick 
(deferred handler) which in turn will do all the hard work. Of course the interrupts 
might be more complex like the serial interrupt which puts the data in the FIFO. But 
the idea is to avoid any major processing at the interrupt level. Thus the possibility of 
interrupts blocking will be minimal.  
 
Also I use simple producer-consumer communication between interrupts and deferred 
handlers. I check that each variable modification in the background is not affected by 
the interrupt with atomic operations or by unidirectional actions (write/read-only 
variables). These will be visible in the Uart module. 
 
 
 
 
 
 



Description of Modules 
 
Module: SysTick 
The SysTick module does all the major timing functions. It flashes the Alive LED, it 
triggers the ADC for starting a new conversion, triggers the LCM end of delay, 
triggers the keyboard scan function and also has the software timers.  
 
 
 
These triggers are simple flags (bits) residing on v_SysStat. You can change easily the 
Application time interval by modifying includes/ifc_time.h constants in the beginning 
of the file: 
 

// Alive Led Indications Set 
#define   c_ALIVEOK_ms       250   /* Alive LED When Ok */ 
#define   c_ALIVESER_ms       500   /* Alive LED When Serial Error */ 
 
// Timed Tasks interval 
#define c_AppInterval_ms        8   
#define c_ADCInterval_ms        32 
#define c_KEYInterval_ms        16 

 
The corresponding activation bit definitions are stated in includes/settings.h: 
 

/*************** SysStat Register ******************/ 
#define b_SysTick    0 
#define b_AppTick    2 
#define b_ADCTick    3 
#define b_LedAlive                 5 

 
I have omitted the flags that are not activated by the Systick timer. Clearing of the 
flags is done by the Kernel.c main loop. Keyboard scanning and LCD actions are 
directly called by the Systick so there are no flags in v_SysStat for these. 
 
As these constants are referred in millisecond units you can change them at your 
desire. The CPU clock frequency is defined in the cfg/hw.in makefile and all timings 
should immediately comply, unless you need a different prescaler (set later on same 
file as CLK/64). 
 

/* Select Clock Source for T0 */ 
#define c_T0CLK  c_CLK64 
#define c_T0DIV  64 

  
Also you can provide dynamic error indications using the f_SystickSetErrLevel 
function. This function modifies the flash LED (Alive) interval (in Ticks) so you can 
notify the user that something is wrong/different changing the flash interval of the 
LED Alive. For example in case of serial communication error you can call from your 
application: 
 

f_SystickSetErrLevel(c_ALIVESER_ticks); 



 
c_ALIVESER_ticks is defined later on include/ifc_time.h and is derived by the 
corresponding constant ALIVESER_ms in the beginning of this same file. 
 
Now what happens when do you need a timer interval to do general timeouts or what 
ever? Easy! The SysTick provides a programmable (MAXSWTIMERS ) number of 
soft-timers plus some additional definitions for easy reference: 
 

// Maximum SW Timers (mS) 
#define c_MAXSWTIMERS 4 
#define c_SwTimer0      0   /* Timer Activation (0: Stop, >0: Run) */ 
#define c_SwTimer1      1 
#define c_SwTimer2      2 
#define c_SwTimer3      3 

 
These counters count in mS. In order to start a timer you write: 

 
buf_SwTimer[SwTimer0] = 10; 

 
This starts SW timer 0 with a timeout value of 10 mS. 
 
To see if the timer expired: 
 If (buf_SwTimer[SwTimer0] == 0) Action_Timer0_finished(); 
 
To prematurely stop the timer: 
 buf_SwTimer[SwTimer0] = 0; 
 
Additionally you may need small delay functions (just a few microseconds). In these 
cases you can find some blocking functions in utils/delay.c. These can be used during 
initialization where you waiting for a peripheral to startup. For example I use such a 
delay during FPGA code configuration at startup. Or alternatively you can use a 
microsecond delay on an SPI component. 
 
Module: Uart 
 
The UART is my favorite peripheral. As most of my applications do not directly need 
the UART, in my hardware I do not add the level shifter from TTL-RS232 level to 
connect to my PC. Given that many times I hand made my boards I do not like to 
spend components, wires and time for functionality that is useful only during 
development (for my monitor or application that is). So what I do, is just put on a 
standard (my standard of course) pin-header the Tx/Rx signals along with power and 
ground and I use an adapter (dongle) to connect to my PC. This dongle could be a 
simple level shifter (and that’s why I need power at the pin-header) or now where 
every computer uses USB ports I use a USB-serial converter (for example my Polulu 
AVR programmer provides this additional functionality). Now every board has this 
pin-header with 3-4 wires and I am done. 
 
The UART has simple I/O functionality. For initialization you call the f_ConfigSerial. 
Baudrate is defined in the makefile (hw.in). The rest of the settings are standard 8N1. 
If you need to change them you have to change the source of this function in uart.c. 



 
For the hardware level we support a number of processors and we use software FIFO 
for both Tx/Rx. The size of the FIFO is defined in includes/settings.h: 

/*************** UART Buffer Sizes ******************/ 
#define c_RXBUFLEN 16 // 16 
#define c_TXBUFLEN 64  // 16 

 
As you see the Tx FIFO is larger. I do this in order to be able to respond with a large 
Tx string from my application without blocking the system. If the FIFO was smaller 
than my larger string sent to the host then the Put String function would wait (and 
block there) until it could write all the data to the FIFO. 
 
The main interface functions are: 

bool f_Uart_PutChar(INT8 c); 
INT16  f_Uart_GetChar(void); 
bool f_Uart_PutStr(INT8 s[]); 

 
f_Uart_PutChar: Put a character to Tx in the TxFIFO unless the FIFO is full. Return 
code signifies that (1: success, 0: Fail). It does not block the system. 
 
f_Uart_GetChar: Checks if a character is available and if yes it removes it from the 
Rx FIFO and returns it to the application (-1 [0xFFFF]: Fail, 0x00XX Character 
received). It does not block the system. 
 
f_Uart_PutStr: Send a null terminated string to serial port. Always successful. This 
function may block the system if the Tx FIFO is smaller than the string. 
 
If you need a printf function you can use an sprintf function to a buffer that would be 
sent to f_Uart_PutStr. Or you can build your own printf function as well. 
 
In order to minimize footprint I use simple conversion functions that resides in 
utils/typeconv.c. A 
 
Module: Debugger 
 
Although I refer to the “debugger” in this article what I actually mean is a monitor. 
The debugger/monitor I have built does not take execution control, does not step 
instructions or does any other fancy things that you would do with a normal debugger. 
It is more like a monitor. You can change variables at run time (without interrupting 
program execution), you can inspect memory, port, I/O or write these peripherals. 
Also you can exercise other devices like SPI, LPC or FPGA if you have added this 
functionality in the monitor. 
 
The basic functionality is summarized below: 
 
Command & Format Summary 

R XXXX Read Byte at Addr XXXX 
W XXXX YY Write Byte YY at XXXX 
V XXXX See hex 4 bytes starting at XXXX 
A XXXX see ASCII 4 bytes starting at XXXX 
1/2/3/4  PINA/B/C/D 



B XX YY Write Port PortX(01-04), DDRX(11-14) YY 
b XX Read Port PortX(01-04), DDRX(11-14) 
Q 0X Read Analog Port 0X (X: 0-7) 
I XXXX Inspect Data in EEPROM at addr XXXX 
P XXXX YY Write byte YY in EEPROM at addr XXXX 
U ????????? User Command 
L 00XX Read LCM addr XX 
C XX Write LCM command XX 
D XX Write LCM data XX 
S XXXXXXXX   Read 4 bytes at LPC Bus Addr. XXXXXXXX-X+4 (32 bits) 
s XXXXXXXX YY Write LPC Byte at address XXXXXXXX (32 Bits) 
t XXXXXXXX YY Write a byte at LPC FLASH SST49F020/A (with write protection) 
* Revert To Serial APP. Disable Debugger 
P Read SPI DR, SR 
F 00XX Read FPGA reg XX (Custom Commands, depend on FPGA Code) 
f 00XX YY Write FPGA Byte YY at reg XX (Custom Commands, depend on FPGA 

Code) 
  
  
Note: All numbers are in Hex format and should be in Capital (case sensitive). 
 
For example in order to inspect a variable at RAM location 0x10 you type at your 
serial terminal:  

R 0010 
 
If you need to modify the contents of this memory location with the value of 0x55: 
 W 0010 55 
 
If you need to inspect PIN A of AVR you just type ‘1’ and the pin status of Port A is 
returned. 

 
Variables address can be found at the /build.lst/kernel.map file. For example you can 
search v_SysStat address and find something similar to the following:  

*(COMMON) 

 COMMON  0x00800160        0x2 build.obj/kernel.o 

                0x00800160                v_SysStat 

                0x00800161                v_StatReg 

 
So the RAM address for AVR is 0x160. 
 
You can provide you own commands on dbgext.c, but you need to modify the base 
debugger.c file as well to get the input and process the new commands. What I prefer 
to do is to implement the extra commands to the separate dbgext.c while I add the 
command recognition and parsing on the debugger.c. I then enable or disable with the 
HW.in makefile module definition the corresponding command when I need it. The 
functionality of the extra commands exists always in the debugger.c which calls the 
dbgext.c functions. 
 
Also there is an empty user command (‘U’) which you may implement differently on 
each application without making more complex dbgext.c modifications.  
 



The debugger module does not use sprintf or stdio libs, so they have minimum 
footprint. On processors with more memory you may implement a better and more 
capable monitor but a small footprint monitor can be used anywhere. 
 
Other modules 
 
I have included the LCM and the keymat 4x4 modules. However these modules are 
partially tested and may not work always properly. Especially the LCM_char module 
was based from Joerg Wunsch’s code for HD44780 controller. In another article we 
will discuss the FPGA SPI programming and the flow in order to produce the C-code 
from the .bit file. 
 

System setup 
 
In order to allow the make files to work you need to adjust the env.in file. Here you 
need to identify the compiler executables, the programmers etc. You need to have the 
executables in your path or otherwise you might need to add the absolute path to  your 
tools. 
 
Cfg/Srcobj.in defines which source/object files will be used depending on definitions 
of hw.in file. 
 
Cfg/Srcdef.in translates the hw.in makefile variable definitions to the C-files used 
#define pre-processor variables. 
 
Finally cfg/hw.in configures all the hardware parameters (ie crystal clock frequency, 
baud rate, active modules etc). 
 
In order to compile the code you open a command prompt at the root directory where 
the makefile resides. Then you type “make” or “make all”. In order to do a new build 
or when you modify the hw.in file you need to begin a new clean build: “make clean” 
and then “make”. 
 
You can see various messages during compilation. In case of error the compiler stops 
and states in which lines have problems in a particular file.  
 
When the rom files are ready you can type either “make prog” or “make progsp” to 
download the program to your target. The prog option is used with AVReal 
programmer while progsp uses the avr-dude which is the standard gcc tool for 
programming. 
 
Typing “make size” you can review the object size. 
Typing “make list” you can see the available options. 
 
Hardware pin-out control is all set to the includes/settings.h file. All my hardware 
devices are using define macros that are referring to this file. So I have all of my I/O 
in one place and for each hardware I have to change only this file. Of course there are 
limitations for specific peripherals like UART or SPI where functionality is 
hardwired.  
 



In the picture below you can see an example compilation. 
 

 
 

Example Application 
 
Our example Application will implement a lock. The key will be a simple smart card 
and will control a servo for locking. The input of the system is a valid smart card 
(with proper serial number) and the output is a PWM signal to control the R/C servo 
for locking/unlocking. 
 
A more detailed information about smart cards you can find at: 
http://support.gateway.com/s/Mobile/SHARED/FAQs/1014330Rfaq21.shtml 
 
In this application I am using simple PROM type smart cards used for telephone 
applications (card-phones). In the pictures below you can see card-readers (passive 
elements for connecting card contacts to PCB) and the pin out of the smart cards. 
 



 

 
 
 
 
 
 
 
 

 
On the diagram below you can see the mechanical configuration of a servo lock. 
 

 
 
The Finite State Diagram below shows how the application logic control is 
implemented.  
 



 
 
 
There are four main states. Initially the system goes at the IDLE state. Until a valid 
smart card is inserted the system waits there. After the insertion of a valid card, which 
is predefined in the code, the system activates the servo and waits for a predetermined 
time until the R/C servo reaches its final position at the WaitTO2Lock state. Then it 
enters the ARM state and waits again a valid smart card in order to do the opposite, 
activating the R/C servo to its initial position. After that (WaitTO2UnLock) it goes to 
the initial IDLE state. 
 
We will use the debugger to find out which PWM values are the optimum start & stop 
positions for the servo (lock/unlock). Depending of how you have implemented the 
mechanical assembly of the lock you will need different PWM values for the two 
terminal positions. With the use of the debugger we will change the two variables that 
control these positions and thus determine with trial and error the correct PWM 
values. This small example will show how to use a small portion of the 
debugger/monitor to develop your application.  
 
A boot screen in example is shown below: 
 



 
 
The zeroes after the OS/APP statement are from the smart card module (no card 
reader connected in my hardware). 
 
The minimum and maximum PWM values are stored in two variables:  

v_ServoLock,  
v_ServoUnLock 

 
We go to the file build.lst/kernel.map and we do a search of “v_ServoLock”: 
 

v_ServoLock         0x1              build.obj/applic.o 
0x00800171                   v_ServoLock 
v_ServoLock                             build.obj/serapp.o 

                                     build.obj/applic.o 
 
We find three instances. The first is the size of the variable. The second is the address 
(with offset 0x800000). The last is the module where the variable is used. 
The important for us is the second. So v_ServoLock is at address 0x171 and it is one 
byte. 
 
We enter the serial application writing at the terminal “* <Enter>”. Then we try the 
direct key actions ‘n’ & ‘m’ exercising the min-max values of the servo. Then we 
enter the debugger by “& <Enter>”.  
 
Then we read the value of v_ServoLock: 
 
 > R 0171 
  32 
 >  
 
The returned value 32 is in hex which is 50 dec which is the initial value of the 
variable. Now let’s decrease this value to 40 dec -> 0x28. 
 



 > W 0171 28 
 > R 0171 
  28 
 > 
 
Here is a similar example shown below: 
 
  

 
 
Re-enter the application with “* <Enter>” and retry the ‘m’ command. The maximum 
terminal position of the servo should be changed! You can play with these and find 
the best values that you can hardcode to your application. Even better you can use the 
EEPROM to store and use from your program for such settings. 
 
You can do the same with v_ServoUnlock and trim this value as well. 
 
This is a small example of how you can do some real-time tests without re-program 
your controller. You can test the pin and port I/O in order to see if the controller “see” 
the proper values on its ports or if any port seems floating (ie a bit would toggle 
randomly when you touch the pin).  
 
 
Serial Application 
 
The serial application is another example task that is used to control directly the 
application. For example it works seamlessly with the debugger. Entering ‘*’ on the 
debugger it reverts to serial application and the opposite. Entering ‘*’ to the serial 
application you can revert to the debugger.  
 
The serial application shown supports two different modes. Direct key execution and 
shell execution. For simplicity the shell commands are single keys (like the debugger 
commands) followed maybe by parameters and terminated by the <Enter> key 
(0x0D).   



 
The direct key execution mode is actions that you do while the key is pressed on your 
terminal. For example we have some commands that control the servo position so you 
can see that your hardware works. For example pressing the ‘c’ key you rotate slowly 
the servo to one direction while pressing ‘v’ you rotate the servo the other way 
around. The function which controls key actions is “f_ProcessAPPKey”.  
 
The shell function which provides more shell like interface is “f_ProcessAPPCMD”. 
For example entering  “q <Enter>” you do the same with pressing ‘c’. That way you 
can have two-fold control in your application and have flexibility of control through 
your terminal.  
 
One important aspect is that upon entering the serial application main function we 
check if the debugger bit is set. If it is we skip execution as the debugger is active. At 
the same time “f_ProcessAPPCMD” have to support the asterisk “*” command in 
order to revert to the debugger. You can use the ampersand “&” character to return to 
debugger if you want to jump to the debugger mode blindly without knowing the 
previous state (toggle with ‘*’ between debugger and application). 
 
 

Conclusion 
 
In this article I presented a simple framework for building embedded systems faster 
and easier. Of course there are easier ways of developing embedded systems (like 
using basic interpreters) but this is a very scalable system which the convenience of 
easy development does not compromise performance or capabilities. I began building 
this system before 15 years on 8051 assembly, I then wrote it in AVR assembly and 
afterwards I re-wrote the whole framework in C. I have done various modifications 
over time and here it is. I provide the source code to the public in order to help more 
people explore the beauty of embedded systems. I hope also that people may 
contribute their own peripherals and extensions making a larger library of 
components. This will make development of new systems for the rest of the people 
easier.  
 
License 
This article, along with any associated source code and files, is licensed under CDDL 
<http://www.opensource.org/licenses/cddl1.php> 
For any questions: avrilos@ilialex.gr 
 
History 
Version 1.0, Initial Release. 
 


