
Title: An embedded systems Simple Operating System
Author: grilialex
Language: C
Platform: Windows, GCC, AVR, Xilinx
Technology: OS, Embedded Systems, Hardware programming
Level: Intermediate
Description: A simple O/S for embedded systems for rapid application
Section Hardware
SubSection Hardware Programming
License: CDDL

Summary

An Embedded System simple Operating System Framework that allows rapid
development of applications build for AVR family but can be ported to other
architectures easily enough. In this article I will describe the concepts and the
structure of this OS and also I will provide an example application in order for the
reader to understand the simplicity of building new stuff easily.

Introduction

Embedded Systems is a very interesting field. You can do things using hardware and
software that everybody gets impressed when they see them, unless the beauty is well
hidden. Along with their problems, limitations and special requirements, if you
repetitively build such systems, you have some common denominator on each design.
I always used a system tick timer and a Uart for example. This is why I choose to
build an OS core framework that would allow me to build faster applications without
being too complex. This OS does not do pre-emptive multitasking. Instead it is a
round-robin co-operative system ie. Each task either does something or exits if it is
waiting new data (no blocking). It is very simple with very low memory footprint and
also you can remove or add components very easily, ready to use it in your next
project. With this OS in hand I could develop my small applications very fast because
when I already had the basics ready to run the only piece missing was my pure
application: What I needed to do, which many times was a one or two pages program.
I could write it and have it up and running in a few days…

Background

When I started to work with embedded systems I wrote assembly language and we
had microcontrollers with EPROM for program memory and very little RAM to use
of. In every project I almost had to use a system tick timer and not a few times a
UART to communicate with the host PC. Around the end of the 90’s with the
introduction of AVR I switched to ISP (In-System Programming). No more bulky
EPROM erasers, easy programming in a few seconds etc. However back then,
memory continued to be limited. During my porting of 8051 codes to AVR I needed a
few things. A system tick timer and a Uart. My next problem was debugging.
Although there was an AVR simulator from ATMEL I could not test my application
when I had to take inputs from external environment. So in order to debug more easily
I build a very small footprint monitor: just read/write ports, memory and exercise
external peripherals. This debugger was an integral part of any new build. Later on I
moved to C and thus I re-write once more most of my code to C. Also as I added more
and more peripherals and program memory was precious I began configuring my tiny
kernel to add or remove components with #defines. The end result was to have a
platform that allowed me to build fast my applications. I just have all the
infrastructure support and I was focused on building the actual application. I only
used simulator for particular pieces of codes (more to see what the actual C statement
do). During debugging I use my monitor, printf to serial port and of course
multimeters, oscilloscopes and … LEDs(!) from the hardware side if I need to.

Also as I am using GCC for compiling I do not use an IDE for AVR development. I
have make files for building and configuring my builds and I use my favorite editor to

do my coding. So this framework can be ported to any microcontroller theoretically
(ie. PIC, ARM etc). In fact I have ported variants to ARM and ColdFire
processors/controllers. Of course you are free to use your favorite IDE.

As memory was limited and I did not need the complexity of pre-emptive
multitasking the philosophy of this OS is that each task checks if it has any input to
process, if there is something to do it just executes otherwise it returns to the round-
robin main. The advantage is that this is very scalable and you don’t worry for
complex things, it is very efficient for RAM and also there is no context switch so you
save execution time. The drawback of course is that the worst case execution (all tasks
execute) should be small enough (preferably less than the system tick period), but this
depend from your application! You might be able to break this rule for once in a
while. However I am avoiding doing that and I believe for most projects the timing of
this loop should not be problem.

Description

Aim of the project
Aim of the project was to have a platform that was scalable and allowed rapid
application development. I finally wrote it in C so it is portable in a way. You have to
write the main peripherals for each new processor which is the main pain. However
after having the core up and running you can benefit from this structure to have it as a
base project where you can build your new applications. As I build this for AVR
initially I name it “AVRILOS”: AVR ILias Operating System. I am assuming that you
have an AVR hardware ready. For your reference and because various I/O are mapped
to specific ports (although you can easily change them) I provide my basic schematic
which again is replicated (like AVRILOS) over projects more or less with additions
for my particular problem.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

D D

C C

B B

A A

Title

Number RevisionSize

A3

Date: 17/10/2010 Sheet of
File: H:\ilias\..\AVRCPU.SCH Drawn By:

1 2
3 4
5 6
7 8
9 10

HEADER 5X2

JP202

1
2

HEADER 2

JP203

18pF

C201
18pF

C200

8MHz

Y200

LED YELLOW

L200

PB0 (T0)1

PB1 (T1)2

PB2 (AIN0)
3

PB3 (AIN1)4

PB4 (SS)5

PB5 (MOSI)6

PB6 (MISO)7

PB7 (SCLK)8

VCC10 AVCC30

GND11

AGND31

AREF
32

RESET9

XTAL212

XTAL113

(ADC0) PA0 40

(ADC1) PA1 39

(ADC2) PA2
38

(ADC3) PA3 37

(ADC4) PA4 36

(ADC5) PA5 35

(ADC6) PA6 34

(ADC7) PA7 33

PC0 22PC1 23PC2 24PC3 25
PC4 26PC5 27(TOSC1) PC6 28(TOSC2) PC7 29

(RXD) PD0 14(TXD) PD1 15
(INT0) PD2 16(INT1) PD3 17(OC1B) PD4 18(OC1A) PD5 19(ICP) PD6 20(OC2) PD7

21

AT90S8535-8PC

AT90S8535-8PC

U200

RESET

RESET

MOSI

SCLK

VCC

VCC
VCC

370R

R201 LED ALIVE

4K7
R200

RESET

RESET CPU

VCC

VCC

ALEXOPOULOS ILIAS

Embedded Platform 2: CPU

SCH-FPFM0033ILX-CPU V0.00/SW0.00

1

LED_ALIVE

LED_ALIVE

1
2
3
4
5

HEADER 5

JP210

VCC

DEBUG PORT
UART - TTL

MISO

Chan0
Chan1
Chan2
Chan3
Chan4
Chan5
Chan6
Chan7

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16

HEADER 8X2
JP200

1 2
3 4
5 6
7 8
9 10
11 12
13 14

HEADER 7X2

JP213

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16

HEADER 8X2

JP201
LCMD0
LCMD1
LCMD2
LCMD3
LCMD4
LCMD5
LCMD6
LCMD7

LCMD0LCMD1
LCMD2LCMD3
LCMD4LCMD5
LCMD6LCMD7

VCC

POT1
R202

VCC

LCM Connector

LCM Contrast

MPU-ISP

MCUFrame - /INIT
MCUData - MOSI-DIN

MCUClk - MISO

Opto1

PowDet

LCME

LCMRW
LCMRS

LCMRS
LCMRWLCME

VCC

VCC

AT90S8535-ATMEGA163/16/32/64 DIP40

AREF

XAREF

AREF
SMD Jumper

CB209

SMD Jumper

CB210 XAREF

VCC

VCC

VCC_3

GND

Power Supply
PowerSupply.schVCC_3 VCC

Tx
Rx

PTx

PTx

PRx

PRx

Place these jumpers back-back for cross-selection

Rx/Tx signal routing for programming pod (POLULU)

1234

Header 4
JP207

1234

Header 4
JP208

PWM2

PWM2 VCC

PWM for Servo control, Supports Futuba/or std.

PowDet

Opto1
Opto2
Opto3

Opto4

VCC

SPI-5V

1
2
3
4
5
6
7
8

Header 8

JP212

SCK
MOSI
MISO

IRQ0

Opto4

LCME
LCMRS

PWM1

Opto2
Opto3

LCMRW PWM1
SMD Jumper

CB208

1 2
3 4

Header 2X2

JP204

USBTX
USBRX

usb
usb.SchDoc

Tools
The tools I use for AVRILOS are:

1. (SW) WinAVR (AVR GCC for windows).
2. (SW) Atmel AVR Studio (for Simulation).
3. (SW) Your preferable Editor.
4. (SW) Terminal Program (ie. Terminal, PuTTY).
5. (SW) Programmer software (AVRDude is already included in WinAVR

but you might use AVREAL32 if you want).
6. (HW) Hardware Board where you controller lives!
7. (HW) Programmer Dongle.
8. (HW) USB/RS232-TTL Serial Level Converter for connecting to Monitor.

Optionally I have used some extra tools:

1. (SW) CVTFPGA (for integrating serial bitstreams of Xilinx Spartan
FPGAs to my code, more on this later)

2. (SW) Hexbin3
3. GNUWIN32 (for makefiles if I don’t use the WinAVR ie. Other compiler

packages like MPLAB)
4. (SW) Python and Python Wx for building host applications.
5. (HW) Oscilloscope (recommended)
6. (HW) Multimeter (nothing less than that!)
7. Anything else you can imagine and fits.

AVRILOS

Directory Structure
The directory structure is as follows:

There are two major directories, HW and SW.

1. HW is the directory where all my hardware development is done. This
includes board schematic & PCB files as well as FPGA design.

2. SW is the software directory which contains directory name of the
processor used, so I know which processor is used in each project after
many years. Also I might put here host software (in another directory
called host).

Let’s concentrate on this directory structure of avr16. AVR16 refers to ATMega16
AVR. You could name it as you wish. Because the compilers have a tendency to
generate many intermediate files I don’t want these to interfere with my source files.
So I have included three directories specifically for this purpose:

1. build.dep: Here the dependencies of the C files are placed. These are auto-
generated by the makefile.

2. build.err: Here I instruct the compiler to put any error files in order to track
them if I need them.

3. build.obj: Here I place the object files of each module. Also the final .elf
file. From the MAP file I can find the memory location of any variable and
use it in my monitor for inspection.

4. build.lst: Listing file of each module.
5. build.rom: final programming files ready to be used for the device

programming.

The root makefile (named makefile) resides on the root of avr16.
The cfg directory contains all the satellite makefiles. These files contains the
configuration options, compiler commands, etc.

The src directory is what you are expecting for. The source files. There we have:

1. Applic: The main file Kernel.c which contains the “scheduler”.
Initialization and main loop are here. Also my specific application c files
are placed here as well.

2. peripheint: Internal peripherals of the microcontrollers. These are timer,
uart etc.

3. periphext: External peripherals outside of the microcontroller. These might
be smart cards, LPC flash, SPI devices etc.

4. utils: Contains many type conversion tools (hex2bin, bin2hex), delays etc.
Of course you might use the stdlib sprintf instead if you have enough
memory space available.

5. debug: Here I have my monitor debugger and in addition an extended
debug file which I have functions individual enabled or disabled for
external peripherals that I might use. If I don’t use them then I just disable
the corresponding functions and I save some memory space.

6. include: Here I have global definitions and settings. Also pin/port
allocation for each peripheral used if this is programmable.

Description of Kernel

The Kernel.c contains the initialization code and the main loop. During then startup
the Kernel executes the various initializations of each module/peripheral. There is no
one initialization file for all modules. Instead each module modifies its own bits in its
I/O registers with Read & Modify instructions. This way each peripheral does not
interferes with the others unless there is a port conflict. This allows more modular
design and easy addition/removal of modules.

The scheduler does a round-robin execution of the tasks we need to. Each task checks
if should be triggered due to some flag like the SysTick timer (In periphint/Timer0.c):

if ((v_SysStat & (1 << b_SysTick)) != 0)

Checks to see that the timer interrupt have flagged b_SysTick (Bit) in v_SysStat
(Variable), if no just exits. If yes executes all its timer functions it needs to.
Another case would be to test if there are any new data in the serial port (like the
applic/serial/SerApp.c) does and exit if nothing is there.

The modules that I almost always have here are SysTick (performs software timers for
mS, Led Alive etc), debugger (monitor for debugging), SysADC which captures all 8
channels in sequence and thus the application just read the memory locations for ADC
data, SerApp which is a small serial command application. Also we have the
capability to run the application either on every main loop or we might select to run
the application every n-times (which is when the LED flashes):

if ((v_SysStat & (1 << b_AppTick)) != 0)

This allows the application to use a simple counter as delays or timeouts because the
action of modifying (increment/decrement) is done every SysTick. Of course with a
slight modification you can have a different pace for LedAlive and the application.

Finally for low power application I have included a sleep command at the end of the
loop. If there is no interrupt active the system will go to low power mode until an
event happens.

So in order to make a new task (application, device etc) you need to know that the
new element should not block the system waiting for too-long. Specifically the
execution delay of all the functions should not exceed the SysTick timing. If it does
you have too alternatives: Either increase the Systick interval or reduce the blocking
time.

In my experience I haven’t had the need to trim these timing for any of my projects
until now.

Another concept I am using is that my interrupt routines are minimal. For example the
timer0 interrupt just sets a flag and exits. The main loop will execute the SysTick
(deferred handler) which in turn will do all the hard work. Of course the interrupts
might be more complex like the serial interrupt which puts the data in the FIFO. But
the idea is to avoid any major processing at the interrupt level. Thus the possibility of
interrupts blocking will be minimal.

Also I use simple producer-consumer communication between interrupts and deferred
handlers. I check that each variable modification in the background is not affected by
the interrupt with atomic operations or by unidirectional actions (write/read-only
variables). These will be visible in the Uart module.

Description of Modules

Module: SysTick
The SysTick module does all the major timing functions. It flashes the Alive LED, it
triggers the ADC for starting a new conversion, triggers the LCM end of delay,
triggers the keyboard scan function and also has the software timers.

These triggers are simple flags (bits) residing on v_SysStat. You can change easily the
Application time interval by modifying includes/ifc_time.h constants in the beginning
of the file:

// Alive Led Indications Set
#define c_ALIVEOK_ms 250 /* Alive LED When Ok */
#define c_ALIVESER_ms 500 /* Alive LED When Serial Error */

// Timed Tasks interval
#define c_AppInterval_ms 8
#define c_ADCInterval_ms 32
#define c_KEYInterval_ms 16

The corresponding activation bit definitions are stated in includes/settings.h:

/*************** SysStat Register ******************/
#define b_SysTick 0
#define b_AppTick 2
#define b_ADCTick 3
#define b_LedAlive 5

I have omitted the flags that are not activated by the Systick timer. Clearing of the
flags is done by the Kernel.c main loop. Keyboard scanning and LCD actions are
directly called by the Systick so there are no flags in v_SysStat for these.

As these constants are referred in millisecond units you can change them at your
desire. The CPU clock frequency is defined in the cfg/hw.in makefile and all timings
should immediately comply, unless you need a different prescaler (set later on same
file as CLK/64).

/* Select Clock Source for T0 */
#define c_T0CLK c_CLK64
#define c_T0DIV 64

Also you can provide dynamic error indications using the f_SystickSetErrLevel
function. This function modifies the flash LED (Alive) interval (in Ticks) so you can
notify the user that something is wrong/different changing the flash interval of the
LED Alive. For example in case of serial communication error you can call from your
application:

f_SystickSetErrLevel(c_ALIVESER_ticks);

c_ALIVESER_ticks is defined later on include/ifc_time.h and is derived by the
corresponding constant ALIVESER_ms in the beginning of this same file.

Now what happens when do you need a timer interval to do general timeouts or what
ever? Easy! The SysTick provides a programmable (MAXSWTIMERS) number of
soft-timers plus some additional definitions for easy reference:

// Maximum SW Timers (mS)
#define c_MAXSWTIMERS 4
#define c_SwTimer0 0 /* Timer Activation (0: Stop, >0: Run) */
#define c_SwTimer1 1
#define c_SwTimer2 2
#define c_SwTimer3 3

These counters count in mS. In order to start a timer you write:

buf_SwTimer[SwTimer0] = 10;

This starts SW timer 0 with a timeout value of 10 mS.

To see if the timer expired:
 If (buf_SwTimer[SwTimer0] == 0) Action_Timer0_finished();

To prematurely stop the timer:
 buf_SwTimer[SwTimer0] = 0;

Additionally you may need small delay functions (just a few microseconds). In these
cases you can find some blocking functions in utils/delay.c. These can be used during
initialization where you waiting for a peripheral to startup. For example I use such a
delay during FPGA code configuration at startup. Or alternatively you can use a
microsecond delay on an SPI component.

Module: Uart

The UART is my favorite peripheral. As most of my applications do not directly need
the UART, in my hardware I do not add the level shifter from TTL-RS232 level to
connect to my PC. Given that many times I hand made my boards I do not like to
spend components, wires and time for functionality that is useful only during
development (for my monitor or application that is). So what I do, is just put on a
standard (my standard of course) pin-header the Tx/Rx signals along with power and
ground and I use an adapter (dongle) to connect to my PC. This dongle could be a
simple level shifter (and that’s why I need power at the pin-header) or now where
every computer uses USB ports I use a USB-serial converter (for example my Polulu
AVR programmer provides this additional functionality). Now every board has this
pin-header with 3-4 wires and I am done.

The UART has simple I/O functionality. For initialization you call the f_ConfigSerial.
Baudrate is defined in the makefile (hw.in). The rest of the settings are standard 8N1.
If you need to change them you have to change the source of this function in uart.c.

For the hardware level we support a number of processors and we use software FIFO
for both Tx/Rx. The size of the FIFO is defined in includes/settings.h:

/*************** UART Buffer Sizes ******************/
#define c_RXBUFLEN 16 // 16
#define c_TXBUFLEN 64 // 16

As you see the Tx FIFO is larger. I do this in order to be able to respond with a large
Tx string from my application without blocking the system. If the FIFO was smaller
than my larger string sent to the host then the Put String function would wait (and
block there) until it could write all the data to the FIFO.

The main interface functions are:

bool f_Uart_PutChar(INT8 c);
INT16 f_Uart_GetChar(void);
bool f_Uart_PutStr(INT8 s[]);

f_Uart_PutChar: Put a character to Tx in the TxFIFO unless the FIFO is full. Return
code signifies that (1: success, 0: Fail). It does not block the system.

f_Uart_GetChar: Checks if a character is available and if yes it removes it from the
Rx FIFO and returns it to the application (-1 [0xFFFF]: Fail, 0x00XX Character
received). It does not block the system.

f_Uart_PutStr: Send a null terminated string to serial port. Always successful. This
function may block the system if the Tx FIFO is smaller than the string.

If you need a printf function you can use an sprintf function to a buffer that would be
sent to f_Uart_PutStr. Or you can build your own printf function as well.

In order to minimize footprint I use simple conversion functions that resides in
utils/typeconv.c. A

Module: Debugger

Although I refer to the “debugger” in this article what I actually mean is a monitor.
The debugger/monitor I have built does not take execution control, does not step
instructions or does any other fancy things that you would do with a normal debugger.
It is more like a monitor. You can change variables at run time (without interrupting
program execution), you can inspect memory, port, I/O or write these peripherals.
Also you can exercise other devices like SPI, LPC or FPGA if you have added this
functionality in the monitor.

The basic functionality is summarized below:

Command & Format Summary

R XXXX Read Byte at Addr XXXX
W XXXX YY Write Byte YY at XXXX
V XXXX See hex 4 bytes starting at XXXX
A XXXX see ASCII 4 bytes starting at XXXX
1/2/3/4 PINA/B/C/D

B XX YY Write Port PortX(01-04), DDRX(11-14) YY
b XX Read Port PortX(01-04), DDRX(11-14)
Q 0X Read Analog Port 0X (X: 0-7)
I XXXX Inspect Data in EEPROM at addr XXXX
P XXXX YY Write byte YY in EEPROM at addr XXXX
U ????????? User Command
L 00XX Read LCM addr XX
C XX Write LCM command XX
D XX Write LCM data XX
S XXXXXXXX Read 4 bytes at LPC Bus Addr. XXXXXXXX-X+4 (32 bits)
s XXXXXXXX YY Write LPC Byte at address XXXXXXXX (32 Bits)
t XXXXXXXX YY Write a byte at LPC FLASH SST49F020/A (with write protection)
* Revert To Serial APP. Disable Debugger
P Read SPI DR, SR
F 00XX Read FPGA reg XX (Custom Commands, depend on FPGA Code)
f 00XX YY Write FPGA Byte YY at reg XX (Custom Commands, depend on FPGA

Code)

Note: All numbers are in Hex format and should be in Capital (case sensitive).

For example in order to inspect a variable at RAM location 0x10 you type at your
serial terminal:

R 0010

If you need to modify the contents of this memory location with the value of 0x55:
 W 0010 55

If you need to inspect PIN A of AVR you just type ‘1’ and the pin status of Port A is
returned.

Variables address can be found at the /build.lst/kernel.map file. For example you can
search v_SysStat address and find something similar to the following:

*(COMMON)

 COMMON 0x00800160 0x2 build.obj/kernel.o

 0x00800160 v_SysStat

 0x00800161 v_StatReg

So the RAM address for AVR is 0x160.

You can provide you own commands on dbgext.c, but you need to modify the base
debugger.c file as well to get the input and process the new commands. What I prefer
to do is to implement the extra commands to the separate dbgext.c while I add the
command recognition and parsing on the debugger.c. I then enable or disable with the
HW.in makefile module definition the corresponding command when I need it. The
functionality of the extra commands exists always in the debugger.c which calls the
dbgext.c functions.

Also there is an empty user command (‘U’) which you may implement differently on
each application without making more complex dbgext.c modifications.

The debugger module does not use sprintf or stdio libs, so they have minimum
footprint. On processors with more memory you may implement a better and more
capable monitor but a small footprint monitor can be used anywhere.

Other modules

I have included the LCM and the keymat 4x4 modules. However these modules are
partially tested and may not work always properly. Especially the LCM_char module
was based from Joerg Wunsch’s code for HD44780 controller. In another article we
will discuss the FPGA SPI programming and the flow in order to produce the C-code
from the .bit file.

System setup

In order to allow the make files to work you need to adjust the env.in file. Here you
need to identify the compiler executables, the programmers etc. You need to have the
executables in your path or otherwise you might need to add the absolute path to your
tools.

Cfg/Srcobj.in defines which source/object files will be used depending on definitions
of hw.in file.

Cfg/Srcdef.in translates the hw.in makefile variable definitions to the C-files used
#define pre-processor variables.

Finally cfg/hw.in configures all the hardware parameters (ie crystal clock frequency,
baud rate, active modules etc).

In order to compile the code you open a command prompt at the root directory where
the makefile resides. Then you type “make” or “make all”. In order to do a new build
or when you modify the hw.in file you need to begin a new clean build: “make clean”
and then “make”.

You can see various messages during compilation. In case of error the compiler stops
and states in which lines have problems in a particular file.

When the rom files are ready you can type either “make prog” or “make progsp” to
download the program to your target. The prog option is used with AVReal
programmer while progsp uses the avr-dude which is the standard gcc tool for
programming.

Typing “make size” you can review the object size.
Typing “make list” you can see the available options.

Hardware pin-out control is all set to the includes/settings.h file. All my hardware
devices are using define macros that are referring to this file. So I have all of my I/O
in one place and for each hardware I have to change only this file. Of course there are
limitations for specific peripherals like UART or SPI where functionality is
hardwired.

In the picture below you can see an example compilation.

Example Application

Our example Application will implement a lock. The key will be a simple smart card
and will control a servo for locking. The input of the system is a valid smart card
(with proper serial number) and the output is a PWM signal to control the R/C servo
for locking/unlocking.

A more detailed information about smart cards you can find at:
http://support.gateway.com/s/Mobile/SHARED/FAQs/1014330Rfaq21.shtml

In this application I am using simple PROM type smart cards used for telephone
applications (card-phones). In the pictures below you can see card-readers (passive
elements for connecting card contacts to PCB) and the pin out of the smart cards.

On the diagram below you can see the mechanical configuration of a servo lock.

The Finite State Diagram below shows how the application logic control is
implemented.

There are four main states. Initially the system goes at the IDLE state. Until a valid
smart card is inserted the system waits there. After the insertion of a valid card, which
is predefined in the code, the system activates the servo and waits for a predetermined
time until the R/C servo reaches its final position at the WaitTO2Lock state. Then it
enters the ARM state and waits again a valid smart card in order to do the opposite,
activating the R/C servo to its initial position. After that (WaitTO2UnLock) it goes to
the initial IDLE state.

We will use the debugger to find out which PWM values are the optimum start & stop
positions for the servo (lock/unlock). Depending of how you have implemented the
mechanical assembly of the lock you will need different PWM values for the two
terminal positions. With the use of the debugger we will change the two variables that
control these positions and thus determine with trial and error the correct PWM
values. This small example will show how to use a small portion of the
debugger/monitor to develop your application.

A boot screen in example is shown below:

The zeroes after the OS/APP statement are from the smart card module (no card
reader connected in my hardware).

The minimum and maximum PWM values are stored in two variables:

v_ServoLock,
v_ServoUnLock

We go to the file build.lst/kernel.map and we do a search of “v_ServoLock”:

v_ServoLock 0x1 build.obj/applic.o
0x00800171 v_ServoLock
v_ServoLock build.obj/serapp.o

 build.obj/applic.o

We find three instances. The first is the size of the variable. The second is the address
(with offset 0x800000). The last is the module where the variable is used.
The important for us is the second. So v_ServoLock is at address 0x171 and it is one
byte.

We enter the serial application writing at the terminal “* <Enter>”. Then we try the
direct key actions ‘n’ & ‘m’ exercising the min-max values of the servo. Then we
enter the debugger by “& <Enter>”.

Then we read the value of v_ServoLock:

 > R 0171
 32
 >

The returned value 32 is in hex which is 50 dec which is the initial value of the
variable. Now let’s decrease this value to 40 dec -> 0x28.

 > W 0171 28
 > R 0171
 28
 >

Here is a similar example shown below:

Re-enter the application with “* <Enter>” and retry the ‘m’ command. The maximum
terminal position of the servo should be changed! You can play with these and find
the best values that you can hardcode to your application. Even better you can use the
EEPROM to store and use from your program for such settings.

You can do the same with v_ServoUnlock and trim this value as well.

This is a small example of how you can do some real-time tests without re-program
your controller. You can test the pin and port I/O in order to see if the controller “see”
the proper values on its ports or if any port seems floating (ie a bit would toggle
randomly when you touch the pin).

Serial Application

The serial application is another example task that is used to control directly the
application. For example it works seamlessly with the debugger. Entering ‘*’ on the
debugger it reverts to serial application and the opposite. Entering ‘*’ to the serial
application you can revert to the debugger.

The serial application shown supports two different modes. Direct key execution and
shell execution. For simplicity the shell commands are single keys (like the debugger
commands) followed maybe by parameters and terminated by the <Enter> key
(0x0D).

The direct key execution mode is actions that you do while the key is pressed on your
terminal. For example we have some commands that control the servo position so you
can see that your hardware works. For example pressing the ‘c’ key you rotate slowly
the servo to one direction while pressing ‘v’ you rotate the servo the other way
around. The function which controls key actions is “f_ProcessAPPKey”.

The shell function which provides more shell like interface is “f_ProcessAPPCMD”.
For example entering “q <Enter>” you do the same with pressing ‘c’. That way you
can have two-fold control in your application and have flexibility of control through
your terminal.

One important aspect is that upon entering the serial application main function we
check if the debugger bit is set. If it is we skip execution as the debugger is active. At
the same time “f_ProcessAPPCMD” have to support the asterisk “*” command in
order to revert to the debugger. You can use the ampersand “&” character to return to
debugger if you want to jump to the debugger mode blindly without knowing the
previous state (toggle with ‘*’ between debugger and application).

Conclusion

In this article I presented a simple framework for building embedded systems faster
and easier. Of course there are easier ways of developing embedded systems (like
using basic interpreters) but this is a very scalable system which the convenience of
easy development does not compromise performance or capabilities. I began building
this system before 15 years on 8051 assembly, I then wrote it in AVR assembly and
afterwards I re-wrote the whole framework in C. I have done various modifications
over time and here it is. I provide the source code to the public in order to help more
people explore the beauty of embedded systems. I hope also that people may
contribute their own peripherals and extensions making a larger library of
components. This will make development of new systems for the rest of the people
easier.

License
This article, along with any associated source code and files, is licensed under CDDL
<http://www.opensource.org/licenses/cddl1.php>
For any questions: avrilos@ilialex.gr

History
Version 1.0, Initial Release.

