Title:

Aut hor :
Language:
Pl atform
Technol ogy:
Level :

Descri ption:

Secti on
SubSecti on
Li cense:

An enbedded systens Sinple Operating System

grilialex

C

W ndows, GCC, AVR, Xilinx

OS, Enbedded Systens, Hardware programing

I nt ermedi ate

A simple OS for enbedded systens for rapid application
Har dwar e

Har dwar e Programmi ng

CDDL

Summary

An Embedded System simple Operating System Franketivat allows rapid
development of applications build for AVR familytbean be ported to other
architectures easily enough. In this article | w#scribe the concepts and the
structure of this OS and also | will provide anmxde application in order for the
reader to understand the simplicity of building retuff easily.

I ntroduction

Embedded Systems is a very interesting field. Yaudo things using hardware and
software that everybody gets impressed when theyhesm, unless the beauty is well
hidden. Along with their problems, limitations asypecial requirements, if you
repetitively build such systems, you have some comdenominator on each design.
| always used a system tick timer and a Uart f@aneple. This is why | choose to
build an OS core framework that would allow me tdidfaster applications without
being too complex. This OS does not do pre-emptiuttitasking. Instead it is a
round-robin co-operative system ie. Each task eifbes something or exits if it is
waiting new data (no blocking). It is very simplé&hwery low memory footprint and
also you can remove or add components very easdgly to use it in your next
project. With this OS in hand | could develop myadimpplications very fast because
when | already had the basics ready to run the piglge missing was my pure
application: What | needed to do, which many tiwas a one or two pages program.
| could write it and have it up and running in avfdays...

Background

When | started to work with embedded systems | evasisembly language and we
had microcontrollers with EPROM for program memang very little RAM to use

of. In every project | almost had to use a systektimer and not a few times a
UART to communicate with the host PC. Around thd ehthe 90’s with the
introduction of AVR | switched to ISP (In-SystemoBramming). No more bulky
EPROM erasers, easy programming in a few secoodsletvever back then,
memory continued to be limited. During my portifg8051 codes to AVR | needed a
few things. A system tick timer and a Uart. My nprbblem was debugging.
Although there was an AVR simulator from ATMEL Iudd not test my application
when | had to take inputs from external environm8&wtin order to debug more easily
| build a very small footprint monitor: just readite ports, memory and exercise
external peripherals. This debugger was an intggudlof any new build. Later on |
moved to C and thus | re-write once more most ofcoge to C. Also as | added more
and more peripherals and program memory was prectibegan configuring my tiny
kernel to add or remove components with #definég. dhd result was to have a
platform that allowed me to build fast my applicats. | just have all the
infrastructure support and | was focused on bugdive actual application. | only

used simulator for particular pieces of codes (morgee what the actual C statement
do). During debugging | use my monitor, printf grial port and of course
multimeters, oscilloscopes and ... LEDs(!) from tlaedware side if | need to.

Also as | am using GCC for compiling | do not usdE for AVR development. |
have make files for building and configuring myldsiand | use my favorite editor to

do my coding. So this framework can be ported tpraitrocontroller theoretically
(ie. PIC, ARM etc). In fact | have ported variatdsARM and ColdFire
processors/controllers. Of course you are freeseoyour favorite IDE.

As memory was limited and | did not need the comipfeof pre-emptive

multitasking the philosophy of this OS is that etatk checks if it has any input to
process, if there is something to do it just exeswatherwise it returns to the round-
robin main. The advantage is that this is veryadaaland you don’t worry for
complex things, it is very efficient for RAM andsalthere is no context switch so you
save execution time. The drawback of course isth@atvorst case execution (all tasks
execute) should be small enough (preferably lems the system tick period), but this
depend from your application! You might be abléteak this rule for once in a

while. However | am avoiding doing that and | beéidor most projects the timing of
this loop should not be problem.

Description

Aim of the project

Aim of the project was to have a platform that wealable and allowed rapid
application development. | finally wrote it in C &as portable in a way. You have to
write the main peripherals for each new procesdochwis the main pain. However
after having the core up and running you can befrefin this structure to have it as a
base project where you can build your new appbeati As | build this for AVR
initially I name it “AVRILOS”: AVR ILias OperatingSystem. | am assuming that you
have an AVR hardware ready. For your referencebaaduse various I/O are mapped
to specific ports (although you can easily chaimgen) | provide my basic schematic
which again is replicated (like AVRILOS) over proje more or less with additions
for my particular problem.

et S
ouerSpply sch

—

1 vee
vees

uuuuuuuuuuuuuuuuuu

Tools

The tools | use for AVRILOS are:

agkrwnE

© N

(SW) WinAVR (AVR GCC for windows).

(SW) Atmel AVR Studio (for Simulation).

(SW) Your preferable Editor.

(SW) Terminal Program (ie. Terminal, PuTTY).

(SW) Programmer software (AVRDude is already inellith WinAVR
but you might use AVREALS32 if you want).

(HW) Hardware Board where you controller lives!

(HW) Programmer Dongle.

(HW) USB/RS232-TTL Serial Level Converter for contieg to Monitor.

Optionally | have used some extra tools:

1.

w N

No ok

(SW) CVTFPGA (for integrating serial bitstreamsXlinx Spartan
FPGAs to my code, more on this later)

(SW) Hexbin3

GNUWIN32 (for makefiles if | don’t use the WinAVR.i Other compiler
packages like MPLAB)

(SW) Python and Python Wx for building host appimas.

(HW) Oscilloscope (recommended)

(HW) Multimeter (nothing less than that!)

Anything else you can imagine and fits.

AVRILOS

Directory Structure

The directory structure is as follows:

There are two major directories, HW and SW.

1.

2.

HW is the directory where all my hardware develophige done. This
includes board schematic & PCB files as well as KR@sign.

SW is the software directory which contains diregtwame of the
processor used, so | know which processor is usedch project after
many years. Also | might put here host softwareainther directory
called host).

Let’s concentrate on this directory structure afl&v AVR16 refers to ATMegal6
AVR. You could name it as you wish. Because theptars have a tendency to
generate many intermediate files | don’t want thteseaterfere with my source files.
So | have included three directories specificatythis purpose:

1. build.dep: Here the dependencies of the C filepleed. These are auto-

generated by the makefile.

2. build.err: Here I instruct the compiler to put ayor files in order to track

them if | need them.

3. build.obj: Here | place the object files of eachdule. Also the final .elf
file. From the MAP file | can find the memory lo@at of any variable and
use it in my monitor for inspection.
build.lIst: Listing file of each module.
build.rom: final programming files ready to be usedthe device
programming.

a s

The root makefile (named makefile) resides on tot of avrl6.
The cfg directory contains all the satellite malesfi These files contains the
configuration options, compiler commands, etc.

The src directory is what you are expecting fore Sburce files. There we have:

1. Applic: The main file Kernel.c which contains thecheduler”.
Initialization and main loop are here. Also my spe@pplication c files
are placed here as well.

2. peripheint: Internal peripherals of the microcohéns. These are timer,
uart etc.

3. periphext: External peripherals outside of the ogontroller. These might
be smart cards, LPC flash, SPI devices etc.

4. utils: Contains many type conversion tools (hex2bin2hex), delays etc.
Of course you might use the stdlib sprintf instégau have enough
memory space available.

5. debug: Here | have my monitor debugger and in aadan extended
debug file which | have functions individual enabla disabled for
external peripherals that | might use. If | dorseihem then | just disable
the corresponding functions and | save some mespage.

6. include: Here | have global definitions and setsinglso pin/port
allocation for each peripheral used if this is pesgmable.

Description of Kernel

The Kernel.c contains the initialization code alnel inain loop. During then startup
the Kernel executes the various initializationeath module/peripheral. There is no
one initialization file for all modules. Insteadochamodule modifies its own bits in its
I/O registers with Read & Modify instructions. Thigy each peripheral does not
interferes with the others unless there is a pmmflct. This allows more modular
design and easy addition/removal of modules.

The scheduler does a round-robin execution ofabkstwe need to. Each task checks
if should be triggered due to some flag like theBgk timer (In periphint/Timer0.c):

if ((v_SysStat & (1 <<b_SysTick))!=0)

Checks to see that the timer interrupt have fladge®lysTick (Bit) in v_SysStat
(Variable), if no just exits. If yes executes &l timer functions it needs to.
Another case would be to test if there are any data in the serial port (like the
applic/serial/SerApp.c) does and exit if nothinghisre.

The modules that | almost always have here areiSly¢performs software timers for
mS, Led Alive etc), debugger (monitor for debugg@ir8ysADC which captures all 8
channels in sequence and thus the applicatiomgastthe memory locations for ADC
data, SerApp which is a small serial command appta. Also we have the
capability to run the application either on evergimloop or we might select to run
the application every n-times (which is when thébLffashes):

if ((v_SysStat & (1<<b_AppTick)) = 0)

This allows the application to use a simple couatedelays or timeouts because the
action of modifying (increment/decrement) is domerg SysTick. Of course with a
slight modification you can have a different pagelfedAlive and the application.

Finally for low power application | have includedl@ep command at the end of the
loop. If there is no interrupt active the systeni go to low power mode until an
event happens.

So in order to make a new task (application, degtcg you need to know that the
new element should not block the system waitingdorlong. Specifically the
execution delay of all the functions should noteed@the SysTick timing. If it does
you have too alternatives: Either increase thei@ystterval or reduce the blocking
time.

In my experience | haven't had the need to trins¢hi@ming for any of my projects
until now.

Another concept | am using is that my interrupttimes are minimal. For example the
timerO interrupt just sets a flag and exits. Themhaop will execute the SysTick
(deferred handler) which in turn will do all theravork. Of course the interrupts
might be more complex like the serial interrupt @hputs the data in the FIFO. But
the idea is to avoid any major processing at tteriapt level. Thus the possibility of
interrupts blocking will be minimal.

Also | use simple producer-consumer communicat@emben interrupts and deferred
handlers. | check that each variable modificatiothie background is not affected by
the interrupt with atomic operations or by unidtrecal actions (write/read-only
variables). These will be visible in the Uart maalul

Description of Modules

Module: SysTick

The SysTick module does all the major timing fuoies. It flashes the Alive LED, it
triggers the ADC for starting a new conversiorgdars the LCM end of delay,
triggers the keyboard scan function and also hasaftware timers.

These triggers are simple flags (bits) residing o8ysStat. You can change easily the
Application time interval by modifying includes/ifime.h constants in the beginning
of the file:

// Alive Led Indications Set
#define ¢ ALIVEOK_ms 250 /* AliveLED When Ok */
#define ¢ ALIVESER ms 500 /* AliveLED When Serial Error */

/l Timed Tasksinterval
#definec_Applnterval_ms 8
#definec_ADClnterval_ms 32
#definec_KEYInterval_ms 16
The corresponding activation bit definitions aread in includes/settings.h:

/*************** wSStat Reglster ******************/

#defineb_SysTick 0
#defineb_AppTick 2
#defineb_ADCTick 3
#defineb_L edAlive 5

I have omitted the flags that are not activatedhaySystick timer. Clearing of the
flags is done by the Kernel.c main loop. Keyboarahsiing and LCD actions are
directly called by the Systick so there are nodlagv_SysStat for these.

As these constants are referred in millisecondsymt can change them at your
desire. The CPU clock frequency is defined in tlgghev.in makefile and all timings
should immediately comply, unless you need a diffeprescaler (set later on same
file as CLK/64).

/* Select Clock Sourcefor TO */
#definec TOCLK c CLK64
#define c TODIV 64

Also you can provide dynamic error indications gdine f_SystickSetErrLevel
function. This function modifies the flash LED (#@4) interval (in Ticks) so you can
notify the user that something is wrong/differeh&ueging the flash interval of the
LED Alive. For example in case of serial communmaterror you can call from your
application:

f SystickSetErrLevel(c ALIVESER ticks);

c_ALIVESER _ticks is defined later on include/ifant.h and is derived by the
corresponding constant ALIVESER_ms in the beginmhthis same file.

Now what happens when do you need a timer intéovdb general timeouts or what
ever? Easy! The SysTick provides a programmableXSWTIMERS) number of
soft-timers plus some additional definitions fosgaeference:

[l Maximum SW Timers (mS)

#definec MAXSWTIMERS4

#definec_ SwTimerO O /* Timer Activation (0: Stop, >0: Run) */
#definec SwTimerl 1

#definec SwTimer2 2

#definec SwTimer3 3

These counters count in mS. In order to start artiyou write:
buf_SwTimer[SwTimerQ] = 10;
This starts SW timer 0 with a timeout value of 18.m

To see if the timer expired:
If (buf_SwTimer[SwTimerQ] == 0) Action_TimerOQ_finished();

To prematurely stop the timer:
buf_SwTimer[SwTimerQ] =0;

Additionally you may need small delay functionss(ja few microseconds). In these
cases you can find some blocking functions in Agilly.c. These can be used during
initialization where you waiting for a peripheraldtartup. For example | use such a
delay during FPGA code configuration at startupa@rnatively you can use a
microsecond delay on an SPI component.

Module: Uart

The UART is my favorite peripheral. As most of nppécations do not directly need
the UART, in my hardware | do not add the leveftehifrom TTL-RS232 level to
connect to my PC. Given that many times | hand nrmagéoards | do not like to
spend components, wires and time for functionahat is useful only during
development (for my monitor or application that 8 what | do, is just put on a
standard (my standard of course) pin-header thRxX gignals along with power and
ground and | use an adapter (dongle) to connettyt®C. This dongle could be a
simple level shifter (and that's why | need poweth& pin-header) or now where
every computer uses USB ports | use a USB-serialarter (for example my Polulu
AVR programmer provides this additional functiobgli Now every board has this
pin-header with 3-4 wires and | am done.

The UART has simple 1/O functionality. For initiaéition you call the f_ConfigSerial.
Baudrate is defined in the makefile (hw.in). Thsti@f the settings are standard 8N1.
If you need to change them you have to changedimes of this function in uart.c.

For the hardware level we support a number of mames and we use software FIFO
for both Tx/Rx. The size of the FIFO is definednnludes/settings.h:
/*************** UART Buffer 8'26******************/
#definec RXBUFLEN 16// 16
#definec_ TXBUFLEN 64 // 16

As you see the Tx FIFO is larger. | do this in oraiebe able to respond with a large
Tx string from my application without blocking tkgstem. If the FIFO was smaller
than my larger string sent to the host then theSurig function would wait (and
block there) until it could write all the data teetFIFO.

The main interface functions are:
bool f Uart_PutChar(INT8 c);
INT16 f_Uart_GetChar(void);
bool f Uart_PutStr(INT8 g]);

f Uart_PutChar: Put a character to Tx in the TxFLF@ess the FIFO is full. Return
code signifies that (1: success, 0: Fail). It doatsblock the system.

f Uart_GetChar: Checks if a character is availalole if yes it removes it from the
Rx FIFO and returns it to the application (-1 [O¥HF: Fail, 0x00XX Character
received). It does not block the system.

f_Uart_PutStr: Send a null terminated string taadgrort. Always successful. This
function may block the system if the Tx FIFO is #israhan the string.

If you need a printf function you can use an spfumction to a buffer that would be
sent to f_Uart_PutStr. Or you can build your owmf{bifunction as well.

In order to minimize footprint | use simple conversfunctions that resides in
utils/typeconv.c. A

Module: Debugger

Although | refer to the “debugger” in this artickdat | actually mean is a monitor.
The debugger/monitor | have built does not takecetien control, does not step
instructions or does any other fancy things that would do with a normal debugger.
It is more like a monitor. You can change variatdesun time (without interrupting
program execution), you can inspect memory, pfotor write these peripherals.
Also you can exercise other devices like SPI, LPERGA if you have added this
functionality in the monitor.

The basic functionality is summarized below:

Command & Format Summary
R XXXX Read Byte at Addr XXXX
W XXXX YY Write Byte YY at XXXX
V XXXX See hex 4 bytes starting at XXXX
A XXXX see ASCII 4 bytes starting at XXXX
1/2/3/4 PINA/B/C/D

B XX YY Write Port PortX(01-04), DDRX(11-14) YY

b XX Read Port PortX(01-04), DDRX(11-14)

Q OX Read Analog Port 0X (X: 0-7)

| XXXX Inspect Data in EEPROM at addr XXXX

P XXXX YY Write byte YY in EEPROM at addr XXXX

U ?2?72?2?7?2?2?7?7? User Command

L 00XX Read LCM addr XX

C XX Write LCM command XX

D XX Write LCM data XX

S XXXXXXXX Read 4 bytes at LPC Bus Addr. XXXXXXXXX+4 (32 bits)

S XXXXXXXXYY

Write LPC Byte at address XXXXXXXX (2 Bits)

t XXXXXXXXYY

Write a byte at LPC FLASH SST49F020/4with write protection)

*

Revert To Serial APP. Disable Debugger

P Read SPI DR, SR
F 00XX Read FPGA reg XX (Custom Commands, dependRBA Code)
fOOXX YY Write FPGA Byte YY at reg XX (Custom Conands, depend on FPGA

Code)

Note: All numbers are in Hex format and shouldrb€apital (case sensitive).

For example in order to inspect a variable at RAkRhBLion 0x10 you type at your

serial terminal:
R 0010

If you need to modify the contents of this memargation with the value of 0x55:
W 0010 55

If you need to inspect PIN A of AVR you just tyde and the pin status of Port A is
returned.

Variables address can be found at the /build.Ist&emap file. For example you can
search v_SysStat address and find something situithe following:

*(COMMON)

COMMON 0x00800160 Ox2 build.obj/kernel.o
0x00800160 v_SysStat
0x00800161 v_StatReg

So the RAM address for AVR is 0x160.

You can provide you own commands on dbgext.c, butneed to modify the base
debugger.c file as well to get the input and pre¢hee new commands. What | prefer
to do is to implement the extra commands to tharsge dbgext.c while | add the
command recognition and parsing on the debugdehen enable or disable with the
HW.in makefile module definition the correspondecagmmand when | need it. The
functionality of the extra commands exists alwaythie debugger.c which calls the
dbgext.c functions.

Also there is an empty user command (‘U’) which yoay implement differently on
each application without making more complex dbgextodifications.

The debugger module does not use sprintf or siiosp $0 they have minimum
footprint. On processors with more memory you nmglement a better and more
capable monitor but a small footprint monitor canused anywhere.

Other modules

I have included the LCM and the keymat 4x4 modutesvever these modules are
partially tested and may not work always propdggpecially the LCM_char module
was based from Joerg Wunsch’s code for HD44780albert In another article we
will discuss the FPGA SPI programming and the flowrder to produce the C-code
from the .bit file.

System setup

In order to allow the make files to work you neeadtjust the env.in file. Here you
need to identify the compiler executables, the @ogners etc. You need to have the
executables in your path or otherwise you mightineeadd the absolute path to your
tools.

Cfg/Srcobj.in defines which source/object fileslwi used depending on definitions
of hw.in file.

Cfg/Srcdef.in translates the hw.in makefile vargatyéfinitions to the C-files used
#define pre-processor variables.

Finally cfg/hw.in configures all the hardware paeders (ie crystal clock frequency,
baud rate, active modules etc).

In order to compile the code you open a commanthpt@t the root directory where
the makefile resides. Then you type “make” or “maké In order to do a new build
or when you modify the hw.in file you need to beginew clean build: “make clean”
and then “make”.

You can see various messages during compilatiocase of error the compiler stops
and states in which lines have problems in a pddidile.

When the rom files are ready you can type eitheaKenprog” or “make progsp” to
download the program to your target. The prog opisoused with AVReal
programmer while progsp uses the avr-dude whithestandard gcc tool for
programming.

Typing “make size” you can review the object size.
Typing “make list” you can see the available opsion

Hardware pin-out control is all set to the includettings.h file. All my hardware
devices are using define macros that are refetarhis file. So | have all of my I/O
in one place and for each hardware | have to chanlyethis file. Of course there are
limitations for specific peripherals like UART oPSwhere functionality is
hardwired.

In the picture below you can see an example cotnmla

—Hal 1 —Uﬂt»lct prntotypeﬂ —Wa.—ahl uild.lst/typeconv.lst mmcu—atmega163 —DMPUCLEK_H==4BA0E60 .8 -DU
RRT BRUD RRTE 19233 —Dc_SysTickPeriod ms=560 D _ U1i.688" -De_UERAFP="UB.80" ~DMOD_SYSTIMER_ON —Dc HCU D
MOD_DEBUGGER_ON —DMOD_UART_ON —DMOD_ADCSH _] N —DMOD_SERAPP_ON —DMOD_PWMTIMER_ON —DMOD_SCARD_ON
hulld depstypeconv.d —I. srcsltils/typeconv.c —o build.ohj/typeconv.o
— Compiling swrcrapplicrapplic.c to build.objsapplic.o
—g —02 -UWall —Wetpict—prototypes —la,.—ahlm -1strapplic. st —-mncu=atmegalt3 —DMPUCLK H
T BHUD HHTE 19283 —Dc_SysTickPeriod_ms=H0B —Dc_UER0OS="U1 —Dc_UERAP. A.98" -DMOD_SYSTIMER_ON —Dc _]
GGER_ON —-DMOD_UART ON —DHOD_ADCE_ON —DMOD_EEPROM_ON —DMOD_SERAPP_ON DHOD _PUMIIMER_ON -DMOD_SCARD ON —Hp,—HD.build.d
epsapplic.d —-I. srcs/applic/applic.c —o build.ohj applic.o
Compiling srcrsperiphint-sUart.c to build.ohjslart.o
avr—gco —g —02 -Wall —Wetpict—prototypes —Wa, —ahlme=huild.lstslart.lst -mmcu=atmegalt3 —-DHMHPUCLK_H=z==48
BAUD_RAT 9208 —Dc_SysTickPeriod_me=58@ —Dc_UEROS="U1.88" —Dc_UERAPF="U@A.@A" —DHOD_S¥STIMER_ON —Dc_MC _]
GGER_ON —DMOD_UART_ON —DMOD_ADCS_ON —DMOD_EEFPROM_ON —DMOD_SERAPP_ON —DMOD_PWMIIMER_ON —DMOD_SCARD_ON —Wp,.—MD.huild.d
eps/lart.d —I. src/periphintsUart.c —o build.obhjsUart.o
i Compiling src/periphintsadc.c to build.ohj/adc.o
avr—gce —¢ —g —02 —lall -Wstrict—prototypes —UWa.—ahlms=huild.lstradc.lst —mmcu=atmegal63 —DMPUCLEK_H=-=-488@666.R —DUART _H
AUD_RATE=19280 —Dc_SysTickPeriod_ms=50@ -Dc_UEROS="Ui.8@" —-Dc_UERAPP="U0.B@" —DHOD_S¥STIMER_ON -Dc_MCU=2 -DMOD_DEEU
GGER_ON —DMOD_UART_ON —DMOD_ADC8_ON —DMOD_EEFROM_ON —DMOD_SERAPF_ON —DMOD_FWMIIMER_ON —DMOD_SCARD_ON —Up,.—MD.build.d
d -I. sresperiphint/adc.c i
Compiling src/debug/debugger.c to build.ohj/debugger.o
c —g —02 —Wall -Wstrict—prototypes —Wa.—ahlm uild.lst/debugger.lst -mmcu=atmegal6d —-DHPUCLK H==-4000008.60 -DU
—Dc_SysTickPeriod ms=58@ —Dc_UER0S="U1.8A" -Dc_UERAFP="URA.@0" —DMOD_SYSTIMER_ON —Dc_MCU —D
MOD UHRT _ON -DMOD_ADCE_ON —DHOD_EEFROM_ON -DMOD_SERAPF_ON —DMOD_PWMIIMER_ON —DMOD_SCARD_ON —Wp,.—MD)|
d src/debug/debugge —0 build.ohj/debugger.o
grc/dehug/debugger wvarning: /%" wpithin comment
Compiling src/debugsdbgext.c to build.obj/dbgext.o
avr—gcc —g —02 —Wall —Wstrict—prototypes —Wa.—ahl uild.lst/dbgext.lst -—-mmcu=atmegaltd —DHPUCLK | H~—4BBBBBB B —-DUAR]
T_BAUD_RATE=19208@ —Dc_SysTickPeriod_ms=588 —Dc_UEROS 1.8@" —Dc_UERAPP="UA.AA" —DHOD_SYSTIMER_ON —Dc_! —DMOD_DERU
GGER_ON —DMOD_UART_ON —DMOD_ADC8_ON —DMOD_EEFROM_ON —DMOD_SERAFPF_ON —DMOD_FWMIIMER_ON —DMOD_SCARD ON —Up,—HD build.d
ep/dhgext d —-I. src/debugrsdbhbgext.c —o build.obhj~ dbgext.o
— Compiling src/periphint/eepromn.c to huild.obhj/eeprom.o
—g —02 —Wall Wstrict—prototypes —Ua.—ahlm uild.lst/eeprom.lst —-mmcu=atmegaltd —DMPUCLK_H=-48A606868.8 -DUAR
T BRUD RRTE 192&3 —Dc_S8SysTickPeriod_ms=588 —Dc_UER0OS="U1.@@" -Dc_UERAFP="UA.AR" —DMOD_SY¥STIMER_ON —Dc_MCI —DMOD_DERU
GGER_ON —DMOD_UART 0N —DHMOD_ADC8_ON —DMOD_EEFPROM_ON —DMOD_SERAPF_ON —DMOD_PWMTIMER_ON —DMOD_SCARD_ON —Up,.—MD.build.d
epseepron.d —I. secs/periphintseeprom.c —o bhuild.ohj eeprom.o
phint/eeprom. In function 'f_EERead’:
phint/eeprom.c:35: warning: cast to pointer from integer of different size
phint/eeprom. In function 'f_EEWrite’:
hint/eeprom.c:41: warning: cast to pointer from integer of different size
Comp111ng spcs/applics/sevapp.c to build.objs/serapp.o
avr-goc —-02 -Wall -Wstrict—prototypes —Wa,.—ahlms=huild.lst/serapp. 10 —-mncu=atmegalt3d —DMPUCLK H
T_BAlD HHTE 19ZBB —Dec_SysTickPeriod_ms=58@ —Dc_UEROS="U1.8@" —-Dc_UERAP A.@8" —-DMOD_SYSTIMER_ON —Dc
GGER_ON —DMOD_UART_ON —DMOD_ADCE_ON —DMOD_EEPROM_ON —DMOD_SERAPP_ON DHOD _PUMIIMER_ON —-DMOD_SCARD ON *Hp, HD bu11d df
epsserapp.d —I. srcrapplics/serapp.c —o build.ohj/serapp.o
src/applic/serapp.c: In function 'f_Serfpp
erc/applic/serapp.c:7%: warning: unused variable ‘p_stp’
ceprc/sapplic/serapp. In function 'f_ProcessAPPCHMD’ :
src/applic/serapp.c:178: warning: unused variable 'p_st-
serapp.c:1?7?: warning: wnused variable 'addr
Compiling src/periphint-Timerli.c to build ubJ/TlmePI 0
-02 -Wall —Wstrict—prototypes —Wa,.—ahlm: AstsTimerd cu=atmegal63d —-DHPUCLKE_Hz=
9208 —De_SysTickPeriod_me=58@ —Dc_UEROS 1: —Dc_UERAP Aa" —DHOD_SY¥STIMER_ON —Dc_MCI]
—DMOD_UART_ON —DMOD_ADCE8_ON —DMOD_EEPROM_ON —DMOD_SERAPP_ON —DMOD_PWMIIMER_ON —DMOD_SCARD_ON —Up,.—MD.huild.d
ep/Timerli.d -I. src/periphint-/Timerli.c —o build.ohj Timerl.o
Compiling src/periphextsscard.c to build. ObJ/oCan o
—g —02 -Wall —Wstrict—prototypes —VUa.—ahlms=h d.lstsscard.ls —mncu=atmegalt3d —DMPUCLK_Hz=-4080686860.8 —DUART
BRUD RRTE 19288 —Dc_SysTickPer ms=580 -Dc_UEROS="Ui_8@'" —Dc_UERAFF="UA.AA" -DHMOD_SYSTIMER_ON —Dc_MCU=2 -DMOD_DERU
GGER_ON —DMOD_UART_ON —DMOD_ADCE_ON —DMOD_EEPROM_ON —DMOD_SERAPP_ON —DMOD_PUMIIMER_ON —DMOD_SCARD_ON —Up,.—MD, build.d|
ep/ﬂcard d -I. srcs/periphextsscard.c —o build.ohjs/scard.o
Compiling src/lUtils/delav.c to build.obhj-/delav.o
—¢c —g —02 —Wall Wstrict-prototypes Wa.-ahlms=build.lstr/delay.lst -mmcu=atmegalbd -DMPUCLK H==-4808B0B.8 -DUART
BRUD RRTE 19288 —Dc_SysTickPeried_ms=588 —Dc_UEROS="U1.@@" —Dc_UERAFP="UB.AA" —DMOD_SY¥STIMER_ON —-Dc_MCU=2 -DMOD_DEEU
GGER_ON —DMOD_UART ON —DMOD_ADC8_ON —DMOD_EEPROM_ON —DMOD_SERAFF_ON —DMOD_PUMTIMER_ON —DMOD_SCARD_ON —Up,. —MD.huild.d|
epsdelay.d —-I. spcsltilssdelay.c —o build.ohjsdel]
— Generating ELF
avr—gce build.obj/kernel.o build.obj/TimerB.o build.obj/typeconv.o build.objsapplic.o build.obj Uart.o bhuild.ohjsadc.o h
uild.obhj/debugger.o build.obj/dbgext.o build.obj eeprom.o build.obj/serapp.o build.obj-/Timerd.o build.ohj/scard.o build.
objsdelay.o —UW1l,—Map=build.lstskernel.map. ref —mmcu=atmegalt3 —o build.ohbhjskernel.elf
— Generating Object
—0 coff-ext—avr —R .eeprom build.obj- kernel.elf build.obj-kernel.ohj
Generating ROM
—0 ihex —R .eeprom build.objrkernel.elf build.rom-kernel.rom
Generatlng EEP
avr—objcopy —j .eeprom —set—section—flags=_.eeprom="alloc,load"” —change—section—1ma .eeprom=A —0 ihex bhuild.obj- kernel.
elf build.romskernel.eep
c:\Progsprogramning avrtools WinAUR-268180118 bhin~avr—objcopy.exe: —change—section-1lma .eepron=-BxBB8AEGB6A never used
Errors: none
= — Generating ALL

F:ilxprojsré&disembedded workf lovsLessonssavrlb_CodeProj>

Example Application

Our example Application will implement a lock. Tkey will be a simple smart card
and will control a servo for locking. The inputtbke system is a valid smart card
(with proper serial number) and the output is a P@ighal to control the R/C servo
for locking/unlocking.

A more detailed information about smart cards yaw find at:
http://support.gateway.com/s/Mobile/SHARED/FAQs/A830Rfag21.shtml

In this application | am using simple PROM type gncards used for telephone
applications (card-phones). In the pictures below gan see card-readers (passive
elements for connecting card contacts to PCB) hagin out of the smart cards.

o

v
< 3
_
-
b
T}
-
-

k|

Card Contacts

On the diagram below you can see the mechanicélgcwation of a servo lock.

Wyiredlink

= -
| /

'\

RIC Servo

The Finite State Diagram below shows how the appba logic control is
implemented.

Wait for Walid Scard

SmantCard Inserted with

carrect IDVF Activate Servo

S Tirmer Running
state_WalTOZLock

S Tirmer Finished

Wait for Walid Scard

g E Inserted with
carrect 1D 7 Activate Serva

S\ Tirmer Running

state_WWaitTOZUnLock

S Timer Finished

There are four main states. Initially the systeragyat the IDLE state. Until a valid
smart card is inserted the system waits therer Alfteinsertion of a valid card, which
is predefined in the code, the system activateseheo and waits for a predetermined
time until the R/C servo reaches its final positatrthe WaitTO2Lock state. Then it
enters the ARM state and waits again a valid soead in order to do the opposite,
activating the R/C servo to its initial positionftér that (WaitTO2UnLock) it goes to
the initial IDLE state.

We will use the debugger to find out which PWM \edware the optimum start & stop
positions for the servo (lock/unlock). Dependindhofv you have implemented the
mechanical assembly of the lock you will need défe PWM values for the two
terminal positions. With the use of the debuggemiechange the two variables that
control these positions and thus determine witl &nd error the correct PWM
values. This small example will show how to usenal§ portion of the
debugger/monitor to develop your application.

A boot screen in example is shown below:

' COM1 - PuTTY

The zeroes after the OS/APP statement are froranttaet card module (no card
reader connected in my hardware).

The minimum and maximum PWM values are stored mvariables:
v_ServoL ock,
v_ServoUnL ock

We go to the file build.Ist/kernel.map and we deearch of “v_ServoLock”:

v_ServoL ock 0x1 build.obj/applic.o
0x00800171 v_ServoL ock
v_ServoL ock build.obj/serapp.o

build.obj/applic.o

We find three instances. The first is the sizeéhef\tariable. The second is the address
(with offset 0x800000). The last is the module vehitre variable is used.
The important for us is the second. So v_Servoliseit address 0x171 and it is one

byte.

We enter the serial application writing at the tiexath** <Enter>". Then we try the
direct key actions ‘n’ & ‘m’ exercising the min-maslues of the servo. Then we
enter the debugger by “& <Enter>".

Then we read the value of v_ServolLock:
>R 0171

32
>

The returned value 32 is in hex which is 50 decctlig the initial value of the
variable. Now let’s decrease this value to 40 de@x28.

>W 0171 28
>R 0171

28

>

Here is a similar example shown below:

2 R 0171

* W 0171 28

? R 0171

Re-enter the application with “* <Enter>" and rethg ‘m’ command. The maximum
terminal position of the servo should be changeall ¥an play with these and find
the best values that you can hardcode to youregiin. Even better you can use the
EEPROM to store and use from your program for ssttings.

You can do the same with v_ServoUnlock and trira thalue as well.
This is a small example of how you can do sometiesd tests without re-program
your controller. You can test the pin and port iK@rder to see if the controller “see”

the proper values on its ports or if any port se#ioading (ie a bit would toggle
randomly when you touch the pin).

Serial Application

The serial application is another example taskithased to control directly the
application. For example it works seamlessly whik debugger. Entering *’ on the
debugger it reverts to serial application and theosite. Entering **’ to the serial
application you can revert to the debugger.

The serial application shown supports two differaodes. Direct key execution and
shell execution. For simplicity the shell commaads single keys (like the debugger
commands) followed maybe by parameters and terednay the <Enter> key
(0Ox0D).

The direct key execution mode is actions that yowdtile the key is pressed on your
terminal. For example we have some commands thmtatdhe servo position so you
can see that your hardware works. For example ipgetise ‘c’ key you rotate slowly
the servo to one direction while pressing ‘v’ yotate the servo the other way
around. The function which controls key action¥ i®rocessAPPKey”.

The shell function which provides more shell likéeirface is “f_ProcessAPPCMD”.
For example entering “gq <Enter>" you do the santé wressing ‘c’. That way you
can have two-fold control in your application aravé flexibility of control through
your terminal.

One important aspect is that upon entering thalsapplication main function we
check if the debugger bit is set. If it is we skiecution as the debugger is active. At
the same time “f_ProcessAPPCMD” have to supporagterisk “*” command in
order to revert to the debugger. You can use theeasand “&” character to return to
debugger if you want to jump to the debugger mdohelly without knowing the
previous state (toggle with *’ between debugged application).

Conclusion

In this article | presented a simple frameworkldailding embedded systems faster
and easier. Of course there are easier ways ofajeng embedded systems (like
using basic interpreters) but this is a very sdalalpstem which the convenience of
easy development does not compromise performancapabilities. | began building
this system before 15 years on 8051 assemblynlhete it in AVR assembly and
afterwards | re-wrote the whole framework in Calvlh done various modifications
over time and here it is. | provide the source dode public in order to help more
people explore the beauty of embedded systemsd also that people may
contribute their own peripherals and extensionsingg& larger library of
components. This will make development of new systéor the rest of the people
easier.

License

This article, along with any associated source @mkfiles, is licensed under CDDL
<http://www.opensource.org/licenses/cddl1.php

For any questiongvrilos@ilialex.gr

History
Version 1.0, Initial Release.

