
Dependency Injection with ObjectPoolManager 
 
Recently I got my hands over some of the IOC tools available for .Net and really liked the concept of 
dependency injection from starting stage of application and invoking / utilizing it whenever required. 
The only thing that was not making me using it fun was too many complexities introduced in them over 
the period of time.  
 
As conceptually this technique is not that “I can’t do it” hard, for sake of fun I decided to make my own. 
 
Followings are the list of .Net IOC tools available (in order of my choices): 
1. Ninject 
2. Unity 
3. Windsor 
4. StructureMap 
 
Definition 
 
According to Wikipedia  

“Dependency injection (DI) in object-oriented computer programming is a design pattern with a core 
principle of separating behavior from dependency resolution. In other words: a technique for decoupling 

highly dependent software components.” 
 
 

Benefits 
 
Traditionally developers used to hard code the dependencies as when it’s required which makes that 
piece of code tightly coupled and needs to be changed over the period of time if any requirement 
changes. That certainly violates the DRY principle as developer may need to modify the entire flow of 
code or make copies of methods to support only that change. 
 
Dependency Injection could help over this situation with the implementation of Interface that provides 
the required functionality to end user. DI framework could load the object inherited from this interface 
which is actually injected much before its utilization whenever possible at runtime. 
 
DI framework need not to be limited by this phenomenon, it actually over comes many of the routines 
problem that developer could come across. Other such example is like developer want to utilize certain 
class but not sure about the inputs needed to make this class usable. In such situation responsible 
module could take care of this class for providing inputs using DI and let developers to use its instance 
just by refereeing its name or type. 
 
According to Wikipedia 
Dependency injection is a specific form of inversion of control where the concern being inverted is the 
process of obtaining the needed dependency 
 
 



Introducing “ObjectPoolManager” (OPM) Framework 
 
Well it’s a lightweight dependency injector container and currently at development phase yet complete 
to achieve most of common needs that every DI framework need to do. Currently this framework has 
been tested along number of test cases that I thought to have in it as initial draft. Certainly it lacks some 
of the features that Ninject and Unity has, but I’ll keep on upgrading this as time permits. As of now it 
does helps to reduce boilerplate code. 
 
 
Design Highlights 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Above module illustrates the current implementation of this DI framework. Whenever user injects the 
type or object it maintains it inside Object container which is accessible internally by framework only. 
Currently this framework supports pool with and without Context. Context here means simple a catalog 
of types/object registered under that key. This helps user to register same types in different Contexts 
and with same names as well. 
 
 
 
 
 
 
 
 
 

ObjectPoolManager 

Context Pool 

Object Container 

Register object instance 

Register object types 

Binding types to concrete types 

Resolving types / Async Resolve 



Object Module 
 
 
ObjectPoolManager Class 
(Static) Maintains the object pools and contexts of pools 
 
Properties 
Pool Provides the non-context based Object Pool 
Context Collection of contexts that holds Object Pools 

 
Methods 
Clear Clears Object container 

 
ObjectPool Class 
Registers and resolves the objects 
 
Properties 
Context Name of context pool belongs to 

 
Methods 
Register(string, object) Registers the object as singleton for provided string name. 

Register<T>() Registers the class type for default constructor. 

Register<T>(ObjectScope) Registers the class type for default constructor using specified 
scope. 

Register<T>(string) Registers the class type for default constructor using specified 
name. 

Register<T>(string, 
ObjectScope) 

Registers the class type for default constructor using specified 
scope string name. 

Register<T>(Func<T>) Registers the class type using provided delegate. 

Register<T>(Func<T>, 
ObjectScope) 

Registers the class type using provided delegate and scope. 

Register<T>(string, Func<T>) Registers the class type using provided delegate and string 
name. 

Register<T>(string, Func<T>, 
ObjectScope) 

Registers the class type using provided delegate and scope 
and string name. 

Register<I, T>() Registers the class type T for default constructor and binds its 
return type to I. 

Register<I, T>(ObjectScope) Registers the class type for default constructor using specified 
scope and binds its return type to I. 

Register<I, T>(string) Registers the class type for default constructor using specified 
name and binds its return type to I. 



Register<I, T>(string, 
ObjectScope) 

Registers the class type for default constructor using specified 
scope string name and binds its return type to I. 

Register<I, T>(Func<T>) Registers the class type using provided delegate and binds its 
return type to I. 

Register<I, T>(Func<T>, 
ObjectScope) 

Registers the class type using provided delegate and scope 
and binds its return type to I. 

Register<I, T>(string, Func<T>) Registers the class type using provided delegate and string 
name and binds its return type to I. 

Register<I, T>(string, Func<T>, 
ObjectScope) 

Registers the class type using provided delegate and scope 
and string name and binds its return type to I. 

Resolve(string) Returns object using specified string name. This can only be 
used for objects registered with Register(string, object) 

Resolve<T>() Returns object of type T that has been registered in current 
accessed pool.  

Resolve<T>(string) Returns object of type T that has been registered in current 
accessed pool using specified string name 

BeginResolve<T>(string, 
ObjectInvokeCallback) 

Begins to resolving the object registered with delegate. 

Dispose() Disposes the current pool. 
 
 
ObjectScope enum 
 
None Tells contained to create new object every time when invoked 
Singleton Returns same object after invoking first time 

 
 
ObjectInvokeArgument Class 
EventArgument returned on calling BeginResolve on ObjectInvokeCallback 
 
Properties 
Context Name of context callback called on. 
Name Name used for registering the object type 
Result Object returned from Async invoke 

 
 
 
 
 
 
 
 
 



Example Application 
 
Consider following example implementing RR layout for Farrari F430 
 
    public interface IDriveLayout 
    { 
        string Name { get; } 
    } 
 
    public interface IEngineLayout 
    { 
        string Name { get; } 
    } 
 
    class RearMidEngine : IEngineLayout 
    { 
        public string Name 
        { 
            get { return "Rear Mid Engine"; } 
        } 
    } 
 
    public class RearWheelDrive : IDriveLayout 
    { 
        public string Name 
        { 
            get { return "Rear Wheel Drive"; } 
        } 
    } 
 
    public class Vehicle 
    { 
        private IDriveLayout _driveLayout; 
        private IEngineLayout _engineLayout; 
 
        public string DriveType 
        { 
            get { return _driveLayout.Name; } 
        } 
 
        public string EngineType 
        { 
            get { return _engineLayout.Name; } 
        } 
 
        public virtual string Name 
        { 
            get { return "Vehicle"; } 
        } 
 
        public Vehicle(IDriveLayout driveLayout, IEngineLayout engineLayout) 
        { 
            _driveLayout = driveLayout; 
            _engineLayout = engineLayout; 
        } 
    } 
 



    class FerrariF430 : Vehicle 
    { 
        public FerrariF430(IDriveLayout driveLayout, IEngineLayout engineLayout) 
            : base(driveLayout, engineLayout) 
        { } 
 
        public override string Name 
        { 
            get 
            { 
                return "Ferrari F430"; 
            } 
        } 
    } 
 

    
Registering Classes 
 
ObjectPoolManager.Pool.Register<IDriveLayout, RearWheelDrive>("RearWheelDrive"); 
ObjectPoolManager.Pool.Register<IEngineLayout, RearMidEngine>("RearMidEngine"); 
 
ObjectPoolManager.Pool.Register<Vehicle, FerrariF430>("FerrariF430", () =>  

new FerrariF430( 
ObjectPoolManager.Pool.Resolve<IDriveLayout>("RearWheelDrive"),                                                                              
ObjectPoolManager.Pool.Resolve<IEngineLayout>("RearMidEngine") 

)); 
 
 
Retrieving Classes 
 
var vehicle = ObjectPoolManager.Pool.Resolve<Vehicle>("FerrariF430"); 
Console.WriteLine("{0} -> Layout: {1}, {2}", vehicle.Name, vehicle.EngineType, vehicle 
.DriveType); 
Console.ReadLine(); 
 
 
Also refer to Test cases included in source code for more examples. 
 
TODO 
1. Attribute support for constructor injection and methods injection 
2. Configurable registration support (in XML) 

 
History 
31 October 2010 – v0.8 Beta Released   
 


