|
|
1. If hci_get_route is unsuccessful, it returns a device_id [0..n] or -1.
Hci_open_dev returns a socket or -1 in the event of an error.
3. The device_id zero is legitimate.
|
|
|
|
|
That's easy enough to test. Turn on a bluetooth device. Do not pair or connect, and run a scan. I think you'll find that the scan reports the device presence.
My expectations are:
scan - find any nearby device with bluetooth receiver turned on - may or may not report devices that are paired to other servers and not soliciting for connection
pair - establish a connection to a scanned device that is soliciting for a connection
connected - a pairing has been established and the server can communicate with the device.
Keep Calm and Carry On
|
|
|
|
|
Why should that be dangerous? Windows updated here and there was a power failure.
(Do not turn of your machine?)
It just kept working.
Bastard Programmer from Hell
"If you just follow the bacon Eddy, wherever it leads you, then you won't have to think about politics." -- Some Bell.
|
|
|
|
|
Member 14968771 wrote: How safe or dangerous would it be to stop and restart the
Linux Bluetooth service itself ?
It should not affect the running of the Linux system at all. It might leave any connected bluetooth devices "orphaned", I.E. with a connection that the kernel doesn't know about, but I really do not know. You almost certainly can't damage the linux system beyond needing a reboot to get back to where you were, so if I were you I'd try it and see what effect it has. In particular I'd look to see if currently connected devices keep working, and if the stuck process recovers quickly after the restart. I suspect that restarting the service won't affect the stuck hcitool process. It probably has all it needs to do its work, so restarting the bluetooth service won't affect it. You should probably take a look at what hcitool is doing when its stuck - it may be a bug in the process, which you could report to the developer, or it may be due to some bluetooth device not properly implementing the discovery protocols, which leads to problems, or, well, anything!
Keep Calm and Carry On
|
|
|
|
|
A "stack" is the set of programs and/or system services needed to supply a given end-user (in this case) service.
As I understand it, for bluez there's
User programs : e.g. hcitool
System software : e.g. whatever system processes are needed to monitor/provide bluetooth services
System libraries : e.g. libbluetooth this provides interfaces for both system and user programs
Kernel module : e.g. bluetooth module, which provides the kernel side implementation details
As you can see, this forms a "stack", with each layer needing services from the layer below it to provide the services it needs to the layer above.
Keep Calm and Carry On
|
|
|
|
|
Member 14968771 wrote: With that assumption - Would manual backup , not automatic as RAID does, be more productive>? It takes time to restore a backup, and all of IT at the coffeemachine, waiting for you. That's expensive.
Member 14968771 wrote: Then there are tools which can be optioned to do just backup - sort of semi-automatically. RAID isn't a form of backup. It's redunancy. And drive may fail, and no user notices. No need to talk backups.
Mine is based on Linux and cheap pendrives. I never backup.
Bastard Programmer from Hell
"If you just follow the bacon Eddy, wherever it leads you, then you won't have to think about politics." -- Some Bell.
|
|
|
|
|
RAID does not replace the need for a backup.
RAID5 is protects against a SINGLE drive failure. If a second drive fails while a previous drive is still failed or is in the process of rebuilding after replacement, you will lose data.
|
|
|
|
|
Think of RAID as providing long term reliability. A RAID cluster can normally survive at least one drive going bad. A backup, on the other hand, is what you need in the event of anything from "finger trouble" erasing data, or a bug writing bad data, to a critical systems failure, such as a flood or file, from which you need to rebuild your operating environment.
Keep Calm and Carry On
|
|
|
|
|
If the only way to loose your files is a hard disk failure, then you may consider RAID5 to be a "backup" solution (the "backup" being stored in the redundancy bits of the non-crashed disks.
For all other issues - fire, flooding, machine/disk stolen/lost, inadvertent file deletion or content modification, ransom virus, discovering that a virus has infected a lot of your files, ... - you need a decent backup. For a great number of the risks, you also need offline, offside backup. You need frequent backup, at least daily, which implies that you need incremental backup.
And everyone should know The Tao of Backup[^] - Old, but as valid as ever.
|
|
|
|
|
Hello,
If you want to clone or backup a partition using Gparted then follow the given steps.
Notes:-
a) Target Partition you need to copy/paste is not mounted.
b) For cloning partition, you need to boot PC using GParted Live CD.
1. Download GParted ISO file & burn it to a CD.
2. Boot your PC using that CD.
3. Then it will automatically boot using the GParted Live (Default settings).
4. Now select Don't touch keymap and click OK.
5. Now GParted interface will open and then right-click on the partition you want to backup and select Copy.
6. After that, select the second disk and right-click on it & select Paste option.
Note:- If you are using the unallocated space then GParted will ask you set how much space to use.
Hope it helps.
|
|
|
|
|
You could try this Hardware and Devices forum. I've moved your post here.
Thanks,
Sean Ewington
CodeProject
|
|
|
|
|
What makes a microprocessor different from a microchip? Is is the ability of a microprocessor to load information into transistors, use it/process it and then reset it`s state so that new information may be loaded and used again. Microchips are just an entity meant to direct information based on a hardcoded algorithm, rather than execute mathematical operations. Is this exact?
|
|
|
|
|
You're comparing apples to oranges.
A "microchip" (nobody uses this term anymore) is any small wafer with a defined electronic functionality, like a microprocessor.
A microprocessor is just a chip with the defined functionality of information transformation and action.
|
|
|
|
|
I may be reading this wrong.. You saying a chip is a microprocessor, and then that a microprocessor is a chip.
May I argue, that in this case and wording, an apple is an orange, because an orange is an apple?
Bastard Programmer from Hell
"If you just follow the bacon Eddy, wherever it leads you, then you won't have to think about politics." -- Some Bell.
|
|
|
|
|
No, not circular. Layers.
You can't have the processor without it being made out of a chip.
There's tons of other chips out there that are not processors, like arrays of AND gates, and whatnot.
|
|
|
|
|
So a bag of chips makes a processor?
And a chip never a processor, but multiple are.
I'm gonna run and duck before asking if a chip can be a multiprocessor
Bastard Programmer from Hell
"If you just follow the bacon Eddy, wherever it leads you, then you won't have to think about politics." -- Some Bell.
|
|
|
|
|
|
Always been said to repeat it in my words to check just that.
Mayhaps you'd like to point out for me and others where I went wrong in my assumptions?
--edit
And scared to make a second attempt The reasoning seems circular? Which of the two is the smaller building block?
Bastard Programmer from Hell
"If you just follow the bacon Eddy, wherever it leads you, then you won't have to think about politics." -- Some Bell.
|
|
|
|
|
So you can't comprehend that all electronic things made of out of silicon (currently) are microchips and microprocessors are just a subset of those?
|
|
|
|
|
Ugh.. thanks for the personal attack, and no, not even remotely interested.
Bastard Programmer from Hell
"If you just follow the bacon Eddy, wherever it leads you, then you won't have to think about politics." -- Some Bell.
|
|
|
|
|
Can a house contain multiple housing units? (such as an apartment building)
Can a housing unit consist of multiple houses? (such as the main house, a garage and a shed)
|
|
|
|
|
trønderen wrote: Can a house contain multiple housing units? (such as an apartment building) A processor is multiple chips then?
trønderen wrote: Can a housing unit consist of multiple houses? (such as the main house, a garage and a shed) It can't, in economical terms, they a single piece.
You saying a chip can be a microprocessor and a microprocessor can be a chip?
Didn't I just hear that they not the same?
Bastard Programmer from Hell
"If you just follow the bacon Eddy, wherever it leads you, then you won't have to think about politics." -- Some Bell.
|
|
|
|
|
Eddy Vluggen wrote: A processor is multiple chips then? In exactly the same way as my house is multiple houses, right?
There were a number of processors thirty to forty years ago requiring multiple chips. Maye there still are some, but I haven't seen any multi-chip processors for quite some time.
In any case, you turned my analogy upside down. A processor (the functional part, the housing unit) resides in a physical unit, a chip, a building. Like an apartment can house multiple functional housing units, can a physical chip house several processors. In a multi-core CPU, some of the processors may be identical, but the chip may in addition house I/O-processors, graphic processors, debug processors and other specialized pones.
It can't, in economical terms, they a single piece. Several of my friends have housing units which has a main house, a garage, a shed and even other houses. They are one housing unit, but spread on several physical units.
In the old days, you could have one main CPU, supported by a Floating Point Unit, possibly also a Memory Management Unit - the CPU, FPU and MMU being three different chips, making up one single processor.
If you go further back in history, even the CPU core was built on multiple chips: The iAPX432 processor had one chip to fetch and decode instructions, one to execute them, and a third chip controlling I/O.
For some years, many 16- or 32-bit CPUs were built from an array of "bit slice" chips - typically 4-bit AMD290x. The 290x were labeled 'bit slice processors', but they were not: They were hardcoded ALU logic that could be activated through control lines. The programming was external to the 290x. (That's exactly what you did when building a real processor from 4 or 8 290x chips.
Way back in time, CPUs were typically built from hundreds of 74 series chips, usually with support of a fair number of discrete components.
So in the old days, processors were built from several chips. Nowadays, several processors may be placed on the same chip.
You saying a chip can be a microprocessor and a microprocessor can be a chip? "<x> can be a <y>" is the wrong way of saying it. To build the functionality of a processor, you might need to use several chips, although that is rarely the case today. And you can build the functionality of multiple processors onto the same chip. A chip is a physical electronic component. A processor is a functionality realized by (a) suitable chip(s).
My problem is understanding how this can be a problem to understand.
|
|
|
|
|
trønderen wrote: and even other houses. They are one housing unit Yeah, so one house, consists of houses, many units.
trønderen wrote: Several of my friends have housing units which has a main house, a garage, a shed and even other houses. They are one housing unit, but spread on several physical units. Administative.
Normalization still stands. Not impressed.
Bastard Programmer from Hell
"If you just follow the bacon Eddy, wherever it leads you, then you won't have to think about politics." -- Some Bell.
|
|
|
|
|